2D-GelelektrophoreseDie zweidimensionale Gelelektrophorese oder 2D-Gelelektrophorese ist eine analytische Methode in Biochemie, Molekularbiologie und Proteomik, konkret eine Variante der Gelelektrophorese. Sie wurde 1975 durch O’Farrell[1] und Klose[2] unabhängig voneinander entwickelt. Sie kombiniert die isoelektrische Fokussierung (IEF) mit der SDS-Polyacrylamidgelelektrophorese (SDS-PAGE) zur Trennung komplexer Proteingemische (Bakterienlysate, Lysate von höheren Zellen oder Geweben, Körperflüssigkeiten) in Einzelproteine. Durch die Kombination der beiden orthogonal zueinander ausgeführten Trenntechniken wird eine besonders hochauflösende Trennung erreicht. Jeder Fleck (Spot) im Proteinmuster entspricht einer Sorte (Spezies) von Proteinmolekülen. Da sich Proteinmuster in biologischen Systemen umwelt- und zustandsabhängig verändern, können sie zur Unterscheidung geschädigter und gesunder oder auch optimal und suboptimal gewachsener Zellen herangezogen werden. Sie geben beispielsweise Aufschluss über Krankheitsursachen oder den Wirkungsmechanismus von Medikamenten auf molekularer Ebene. Aufgrund der Komplexität von zweidimensionalen Proteinmustern wird für deren Auswertung auf speziell entwickelte Computerprogramme zurückgegriffen. ProbenvorbereitungDie Gewinnung und Verarbeitung der Probe erfolgt unter möglichst identischen Bedingungen. Damit wird ausgeschlossen, dass neben den zu untersuchenden experimentellen Variablen verfälschende Einflüsse auf die Probe einwirken. Aus extrazellulären Kompartimenten (sezernierte Proteine) werden die Proteine meist gefällt. Intrazelluläre Proteine extrahiert man durch schonende Zerstörung der Zellstrukturen und eine teilweise Proteinreinigung. Außerhalb ihrer natürlichen Umgebung sind die Proteine besonders anfällig für die Bildung von Proteinaggregaten und den Abbau durch Proteasen. Ferner wird bei der Probenvorbereitung bei 4 °C gearbeitet. In der Regel werden Harnstoff als Chaotrop und nichtionische Detergentien sowie proteasehemmende Stoffe zugesetzt,[3] um Wechselwirkungen und Veränderungen der Proteine zu vermeiden. Erste Dimension (IEF)Während der IEF (erste Dimension) wird der Proteinextrakt in einem pH-Gradienten-Gel im elektrischen Feld eindimensional aufgetrennt. Die sauren und basischen Aminosäurereste der Proteine durchlaufen in Abhängigkeit vom Umgebungs-pH-Wert verschiedene (De)protonierungszustände und bestimmen so die Ladung des Proteins. Damit sind sie für die Wirkung des elektrischen Feldes auf die Proteine verantwortlich. Am isoelektrischen Punkt (pI) heben sich positive und negative Ladungen des Proteins auf. Der pI entspricht dem pH-Wert an dem das Protein eine Nettoladung von 0 besitzt. Es findet keine Kraftwirkung des elektrischen Feldes auf das nun ladungsneutrale Protein mehr statt und das Protein lagert sich ab. Durch Diffusion verursachte Ortsveränderungen in benachbarte pH-Bereiche führen zur erneuten elektrischen Ladung des Proteins. Das wieder wirksame elektrische Feld jedoch fördert das Protein sofort zurück an seinem isoelektrischen Punkt. Zwei verschiedene IEF-Technologien stehen zur Verfügung.
Weiterhin kann als erste Dimension alternativ eine Polyacrylamid-Gelelektrophorese mit einem kationischen Detergens wie 16-BAC durchgeführt werden.[6][7] ÄquilibrierungBei der sogenannten Äquilibrierung, die sich der Trennung nach dem pI anschließt, wird das Gel mit den Proteinen vorerst reduziert (beispielsweise mit Mercaptoethanol oder Dithiothreitol). Dies dient der Beseitigung von Disulfidbrücken. Um eine Reoxidation der dabei entstandenen -SH HS-Gruppen zu Disulfid(-S-S-)Gruppen zu verhindern, werden im nächsten Schritt die HS-Gruppen z. B. mit Iodacetamid alkyliert. Schlussendlich werden die Proteine mit Natriumdodecylsulfat (sodium dodecyl sulphate – SDS) beladen. SDS ist ein negativ geladenes Detergenz. Pro 3 Aminosäuren bindet sich ca. ein SDS-Molekül über sein aliphatisches Ende durch hydrophobe Wechselwirkung an das Proteinmolekül. Mit der negativ geladenen Seite stößt es sich von den geladenen Enden in der Nachbarschaft gebundener SDS-Moleküle ab. Dies führt zur völligen Entfaltung (Linearisierung) der Proteinmoleküle. Je größer ein Proteinmolekül ist, desto länger sind die entstehenden mit SDS beladenen Ketten. Da abhängig von der Länge des Proteins sehr viele negativ geladene SDS-Moleküle binden, kann die Eigenladung für die meisten Proteine im Weiteren vernachlässigt werden. Zweite Dimension (SDS-PAGE)Der Gelstreifen mit den nach dem pH-Wert aufgetrennten und äquilibrierten Proteinen wird bei vertikalen Systemen auf die Kante eines quadratischen bzw. rechteckigen ebenfalls SDS-haltigen Polyacrylamidgels gelegt. Bei horizontalen Systemen wird der Gelstreifen dagegen einige Millimeter vom Gelrand entfernt auf das flache SDS-Gel gelegt. Die Proteine werden nun senkrecht zur ersten Dimension in einer zweiten Elektrophorese nach ihrer Größe getrennt. Beim Anlegen des elektrischen Feldes (Anode gegenüber vom IEF-Gelstreifen) wandern die entfalteten und von SDS umgebenen Proteine mit ihrem Überschuss negativer Ladungen durch das Gel, welches den Proteinen entsprechend ihrer Molekülgröße einen mehr oder minder großen Widerstand entgegensetzt. Kleine Moleküle wandern relativ ungestört und erreichen schnell die dem IEF-Gel abgewandte Gelkante, große Moleküle werden bei der Wanderung ständig vom Gel gebremst und kommen kaum voran. Die Trennung in der zweiten Dimension wird mit Ankunft der kleinen Proteine am, dem IEF-Gel abgewandten, Gelrand gestoppt. Sichtbar wird dies durch einen mitlaufenden Farbstoff, wie zum Beispiel Bromphenolblau. Dieser kann bereits bei der Äquilibrierung zugegeben werden. Damit das Proteinmuster nach erfolgter Trennung vorhanden bleibt, muss es in einem anschließenden Schritt fixiert werden. Dazu werden verschiedene Alkohole (Methanol oder Ethanol) und Essigsäure genutzt. Diese denaturieren die getrennten Proteine und entfernt das Tensid, wodurch die Proteine unlöslich werden. Dadurch wird Diffusion verhindert und das 2D Muster wird somit zeitstabil.
Die Proteine markieren und detektierenMarkierung in der lebenden Zelle (in vivo)Parameter wie die Produktion von Proteinen in einem bestimmten Zeitraum (Proteinsyntheserate) oder die Phosphorylierung von Proteinen pro Zeitspanne werden bevorzugt durch den Einbau von (radioaktiven) Isotopen bestimmt. Dazu wird der Bakterien/Zellkultur ein Nährstoffsubstrat mit einem außergewöhnlichen Isotop verabreicht, welches dann in die Proteine (35S) oder in die Phosphatgruppen phosphorylierter (32/33P) Proteine eingebaut wird. Wird die Zeitspanne des Einbaus relativ kurz gewählt, ist im Ergebnis eher eine Momentaufnahme des zellulären Geschehens erfassbar, bei langer Zeitspanne eher das kumulierte Bild vieler Einzelereignisse. Der Proteinextrakt der markierten Zellen wird separiert und der Anteil der markierten Proteine über Autoradiographie oder massenspektrometrische Verfahren im 2D Muster bestimmt. Eine metabolische Markierung kann auch mit chemisch modifizierten Aminosäuren erfolgen, welche für die spätere Markierung mit Fluoreszenzfarbstoffen mit einem biologisch inerten Linker ausgerüstet wurden (Bioorthogonale Markierung). Zur Bestimmung der akkumulierten Proteinmenge kann neben einer dauernden metabolischen oder Isotopenmarkierung auch auf eines der folgend erklärten Verfahren zurückgegriffen werden. Markierung vor der gelelektrophoretischen TrennungBesonders um mehrere Proben auf einem 2D-Gel zu trennen, werden kovalent bindende Fluoreszenzfarbstoffe eingesetzt. Dazu werden maximal drei verschiedene Proteinextrakte mit je einem Farbstoff markiert, gemischt und gemeinsam auf demselben Gel getrennt. Da die Farbstoffe separat voneinander detektiert werden können, ist die Generierung und der differentielle Vergleich dreier probenspezifischer Proteinmuster möglich (Difference Gel Electrophoresis, DIGE). Problematisch ist die Massenbeeinflussung der Proteine durch den gebundenen Farbstoff. Zudem sind die Farbstoffe relativ instabil und teuer. Verwendet werden:
Markierung bzw. Färbung nach der TrennungDie klassischen Proteinfärbungen erfolgen nach der elektrophoretischen Trennung. Eine Mengenbestimmung kann bei den nicht-linearen Färbeverfahren nur näherungsweise durch Versetzen der Probe mit Proteinen bekannter Konzentrationen erfolgen (z. B. ein Komigrationsstandard). Je nach gewünschter Spezifität und Sensitivität werden eingesetzt: Adsorptionsfarbstoffe
Fluoreszenzfarbstoffe
Durch die zweidimensionale Gelelektrophorese lassen sich in bakteriellen Extrakten nach Färbung der Proteine oft weit über tausend verschiedene Proteinspezies nachweisen. In Mausembryonen ließen sich circa 10.000 Spots darstellen. 2D Gele analysieren und interpretieren2D Gele digitalisierenBeim Digitalisieren von 2D-Gelen werden die 2D-Muster in Pixel mit verschiedenen Grauwerten zerlegt. Die Auflösung bestimmt die Genauigkeit in x- und y-Richtung, die Farbtiefe die Menge der Graustufen, welche für die Abbildung der Proteinmenge pro Pixel zur Verfügung steht. Imaging-Geräte
Für weitere Informationen zum Scannen von Gelen kann man eine entsprechende Anleitung (in Englisch) herunterladen.[8] Single Channel-TechnikenBei den Single Channel Techniken wird in der Regel eine Serie von Gelen aufgenommen, die vollständig auf die gleiche Art und Weise eingefärbt wurde. MultiplexingBeim Gel-Multiplexing werden von ein und demselben Gel mehrere Bilder unabhängig voneinander generiert. Das kann unter verschiedenen Umständen möglich sein:
2D Proteinmuster auswertenKlassischerweise werden 2D-Gele visuell am Licht- oder bei Fluoreszenzfarbstoffen am UV-Tisch ausgewertet. Aufgrund der Komplexität von Proteinmustern führt eine softwaregestützte Analyse zu verlässlicheren Ergebnissen. Für einen Überblick über den aktuellen Stand der Vorgehensweise siehe:[9][10] Gelbilder aufbereitenUm Gelbilder quantitativ zu analysieren, sollten sie vom 2D-Gel-typischen inhomogenen Hintergrund befreit und von artifiziellen Signalen bereinigt werden. Das nebenstehende Bild zeigt beispielsweise die Zerlegung eines Gelbildes in eine Hintergrundkomponente, eine Komponente mit artifiziellen Signalen und die für die weiterführende quantitative Analyse genutzte Spot-Komponente. Gelbilder positionell korrigierenEin lange Zeit ungelöstes Problem stellte die schwierige positionelle Reproduzierbarkeit der Proteinmuster im 2D-Gel dar. Eine mögliche Lösung bestand in der Vermeidung unabhängig hergestellter Gele.
Referenzgele und ProteomkartenFür eine wissenschaftlich fundierte Interpretation der 2D-Gele wird die Identität der hinter den Proteinspots stehenden Proteine bestimmt. Dies kann über verschiedene Technologien wie beispielsweise den Edman-Abbau oder massenspektrometrische Verfahren wie MALDI-TOF Massenspektrometrie erfolgen. Während in den 1990er Jahren die Proteinspots noch manuell aus den Gelen ausgeschnitten wurden, haben heute Roboter zum Ausstechen der Spots und zum Pipettieren in die Laboratorien Einzug gehalten. Mit Hilfe der Robotertechnik können mehrere hundert Proteine quasi über Nacht identifiziert werden. Aufgrund der Einführung der computergestützten positionellen Korrektur der Proteinmuster wurde es möglich, Proteinspotidentifikationen problemlos von einem Gel auf ein anderes zu übertragen, ohne nochmals die Spots identifizieren zu müssen. Ein 2D-Gel, welches den Proteinextrakt aus einer Zellkultur zeigt, bildet nur ein Subset aller möglichen Zellproteine ab. Erst Gelserien aus Zellkulturen, die unter verschiedenen Wachstumsbedingungen gezogen wurden, können die Gesamtzahl aller möglichen Proteine zeigen. Grund ist die differentielle Genexpression, die nur die Produktion momentan wichtiger Proteine erlaubt und die Synthese gerade nicht benötigter Proteine verhindert. Zur Konstruktion umfassender Proteomekarten, die einen Großteil aller möglichen Proteine enthalten, werden Gel-Einzelbilder positionell angeglichen und über Bildfusionsalgorithmen zu einem Kompositbild zusammengefasst. Das Kompositbild wird mit den Daten aus den Proteinidentifikationen kombiniert und kann dann als Referenz für die Interpretation weiterer Experimente genutzt werden. Proteinspots detektieren und quantifizierenFür eine (semi)quantitative Auswertung der 2D-Gele wird die Gesamt-Absorption (Absorptionsfarbstoffe), das Gesamt-Radiosignal (radioaktiv markierte Proteine, Autoradiogramm) bzw. das Gesamt-Fluoreszenzsignal (Fluoreszenzfarbstoffe) eines Proteinspots über alle Bildpunkte ermittelt. Im ersten Spotdetektionsschritt werden die Koordinaten der Proteinspots und im zweiten die entsprechenden Spotformen bestimmt. Die Bestimmung der Spotumrisse kann nah an der Pixelinformation oder aber über mathematische Modelle erfolgen. Störinformationen, wie z. B. Hintergrund, Artefakte und Bildrauschen (s. Bildvorbereitung) werden vor der Quantifizierung ausgeschlossen. Die Grauwerte der Bildpunkte werden, wenn nötig, mit geräte- und farbstoffabhängigen Kalibrierungskurven korrigiert und dann innerhalb der gefundenen Spotumrisse zu einer Rohquantität aufsummiert. Die Rohquantitäten werden normiert und den entsprechenden Proteinspots zugeordnet. Da wie weiter oben schon erwähnt die Spotdetektion von Gel zu Gel nicht absolut reproduzierbare Ergebnisse liefert, kann es beim Zuordnen von Proteinen zu ihren Expressionsprofilen zu Irrtümern kommen, die mit den etablierten Methoden manchmal nicht aufgelöst werden können. Darum wurde 2003 eine neue Methode zum Spotmatching eingeführt. Diese beruht auf der Definition eines Spotconsensus aus allen zu analysierenden Gelen eines Experiments auf der Basis eines Kompositbildes. Weil das Kompositbild sämtliche Spotinformationen aus dem Gesamtexperiment enthält, kann der Spotconsensus mindestens auf all jenen Gelen zur Spotquantifizierung angewendet werden, aus denen das Kompositbild erstellt wurde. Spotzuordnungsfehler können bei Anwendung dieser Methode ausgeschlossen werden. Daten visualisierenDurch die Anwendung von Proteomekarten und kompositbildbasierter Spotdetektion ergeben sich völlig neue Möglichkeiten der Visualisierung von Proteinspots, die im analysierten Experiment auffällig wurden. Das nebenstehende Bild beispielsweise zeigt eine Zusammenfassung aus vier verschiedenen Proteinsynthesemustern. Die Farben zeigen an, unter welchen Umweltbedingungen welches Protein in seiner Synthese mindestens zweifach erhöht wird. Mit Hilfe derartiger Farbcodierungen wird es erstmals möglich, neben den positionellen Daten der Proteinspots nun auch Regulationsdaten zu visualisieren. Biomarker sind somit schnell und zuverlässig identifizierbar. Abwandlungen der klassischen 2D-GeleChemie des TrennsystemsWährend die klassischen 2D-Gele Proteine in der 1. Dimension nach ihrem isoelektrischen Punkt und in der 2. Dimension nach ihrer Größe trennen, werden in der Praxis für Proteine durchaus auch andere Trennmethoden in zwei Dimensionen kombiniert. Beispiele sind:
Geometrie des Trennsystems
Vorteile von 2D-Gelen
Probleme der 2D-Gel-ElektrophoreseWie jede andere Technik in der Proteinbiochemie birgt auch die 2D-Gel-Elektrophorese einige Probleme:
Einzelnachweise
Literatur
|
Portal di Ensiklopedia Dunia