Rhestr unfathiannau trigonometrig
Nodiant
Defnyddir y nodiant canlynol ar gyfer pob un o'r chwech ffwythiant trigonometrig (sin, cosin (cos), tangiad (tan), cotangiad (cot), secant (sec), a chosecant (csc). Dim ond y nodiant ar gyfer sin a roddir isod, mae'r nodiant ar gyfer y ffwythiannau eraill yn gyffelyb.
Nodiant
|
Darllener
|
Disgrifiad
|
Diffiniad
|
sin²(x)
|
"sin sgwâr x"
|
sin wedi ei sgwario
|
sin²(x) = (sin(x))²
|
arcsin(x)
|
"arcsin x"
|
ffwythiant gwrthdro sin
|
arcsin(x) = y os a dim ond os sin(y) = x a
|
(sin(x))−1
|
"sin x, i'r [pŵer] meinws un"
|
Cilydd sin
|
(sin(x))−1 = 1 / sin(x) = csc(x)
|
Gellir ysgrifennu arcsin(x) yn sin−1(x) yn ogystal; rhaid gofalu rhag drysu hyn â (sin(x))−1.
Diffiniadau
![{\displaystyle {\begin{aligned}\cos(x)&=\sin \left(x+{\frac {\pi }{2}}\right)\\\tan(x)&={\frac {\sin(x)}{\cos(x)}}&\quad \cot(x)&={\frac {\cos(x)}{\sin(x)}}={\frac {1}{\tan(x)}}\\\sec(x)&={\frac {1}{\cos(x)}}&\quad \csc(x)&={\frac {1}{\sin(x)}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/67323d735cad8b0170230b2b8e55b750aa8b5497)
(Gweler ffwythiant trigonometrig am fwy o wybodaeth)
Cyfnodedd, cymesuredd a symudiadau
Cyfnodedd
Mae cyfnod o 2π gan y ffwythiannau sin, cosin, secant, a chosecant (cylch llawn): os mae yn unrhyw gyfanrif yna mae
![{\displaystyle {\begin{aligned}\sin(x)&=\sin(x+2k\pi )\\\cos(x)&=\cos(x+2k\pi )\\\sec(x)&=\sec(x+2k\pi )\\\csc(x)&=\csc(x+2k\pi )\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b5a289625d5b97adb2f61002c0285012537eaec5)
Mae cyfnod o π (hanner cylch) gan y ffwythiannau tangiad a chotangiad:
![{\displaystyle {\begin{aligned}\tan(x)&=\tan(x+k\pi )\\\cot(x)&=\cot(x+k\pi )\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/763cb6ab1dc28130238ec107a8b632226efd1a9f)
Cymesuredd
![{\displaystyle {\begin{aligned}\sin(-x)&=-\sin(x)&\sin \left({\tfrac {\pi }{2}}-x\right)&=\cos(x)&\sin \left(\pi -x\right)&=+\sin(x)\\\cos(-x)&=+\cos(x)&\cos \left({\tfrac {\pi }{2}}-x\right)&=\sin(x)&\cos \left(\pi -x\right)&=-\cos(x)\\\tan(-x)&=-\tan(x)&\tan \left({\tfrac {\pi }{2}}-x\right)&=\cot(x)&\tan \left(\pi -x\right)&=-\tan(x)\\\cot(-x)&=-\cot(x)&\cot \left({\tfrac {\pi }{2}}-x\right)&=\tan(x)&\cot \left(\pi -x\right)&=-\cot(x)\\\sec(-x)&=+\sec(x)&\sec \left({\tfrac {\pi }{2}}-x\right)&=\csc(x)&\sec \left(\pi -x\right)&=-\sec(x)\\\csc(-x)&=-\csc(x)&\csc \left({\tfrac {\pi }{2}}-x\right)&=\sec(x)&\csc \left(\pi -x\right)&=+\csc(x)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3a363d4b636fc39669417111987ce4e3060e919f)
Symudiadau
![{\displaystyle {\begin{aligned}\sin \left(x+{\tfrac {\pi }{2}}\right)&=+\cos(x)&\sin \left(x+\pi \right)&=-\sin(x)\\\cos \left(x+{\tfrac {\pi }{2}}\right)&=-\sin(x)&\cos \left(x+\pi \right)&=-\cos(x)\\\tan \left(x+{\tfrac {\pi }{2}}\right)&=-\cot(x)&\tan \left(x+\pi \right)&=+\tan(x)\\\cot \left(x+{\tfrac {\pi }{2}}\right)&=-\tan(x)&\cot \left(x+\pi \right)&=+\cot(x)\\\sec \left(x+{\tfrac {\pi }{2}}\right)&=-\csc(x)&\sec \left(x+\pi \right)&=-\sec(x)\\\csc \left(x+{\tfrac {\pi }{2}}\right)&=+\sec(x)&\csc \left(x+\pi \right)&=-\csc(x)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9aec92cc1d2b306a7f61d55462e94d1397c55d39)
Cyfuniadau llinol
Weithiau mae'n bwysig gwybod bod cyfuniad llinol o donau sin gyda'r un cyfnod (ond gyda gwahanol symudiad cydwedd) yn rhoi ton sin gyda'r un cyfnod. Yn gyffrefinol, mae
![{\displaystyle a\sin x+b\cos x={\sqrt {a^{2}+b^{2}}}\cdot \sin(x+\varphi )\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/122a9fdc91f13be1d551abbc0275c26956b48b2e)
lle mae
![{\displaystyle \varphi =\left\{{\begin{matrix}{\rm {arctan}}(b/a),&&{\mbox{os mae }}a\geq 0;\;\\\arctan(b/a)\pm \pi ,&&{\mbox{os mae }}a<0.\;\end{matrix}}\right.\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46bfef3ce227443bba7b3084f17f626595410d67)
Yn gyffredinol, am symudiad cydwedd mympwyol, mae gennym fod
![{\displaystyle a\sin x+b\sin(x+\alpha )=c\sin(x+\beta )\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/84311711d59b3dcb5695c94cf7d5c1a625054270)
lle mae
![{\displaystyle c={\sqrt {a^{2}+b^{2}+2ab\cos \alpha }},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/997d6c4bdc8f20cf41faf1d17143e1fdf4c51fdf)
a
![{\displaystyle \beta ={\rm {arctan}}\left({\frac {b\sin \alpha }{a+b\cos \alpha }}\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/788b0816cbe59764975be1901761e701f0b7dff5)
Unfathiannau Pythagoreaidd
Seilir y canlynol ar theorem Pythagoras:
![{\displaystyle {\begin{aligned}\sin ^{2}(x)+\cos ^{2}(x)&=1\\\tan ^{2}(x)+1&=\sec ^{2}(x)\\\cot ^{2}(x)+1&=\csc ^{2}(x)\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7d1be402eda7643499b915e322090e8dd09fc63)
Gellir deillio'r ail a'r trydydd hafaliad uchod o'r cyntaf trwy rhannu â cos2(x) a sin2(x) yn ôl eu trefn.
Unfathiannau swm neu wahaniaeth onglau
Fe'u celwir hefyd yn "fformwlâu adio a thynnu". Gellir eu profi gan ddefnyddio fformwla Euler.
- (Pan y mae "+" ar y chwith, mae "+" ar y de, ac yn gyffelyb gyda "-".)
- (Pan y mae "+" ar y chwith, mae "-" ar y de, ac i'r gwrthwyneb.)
![{\displaystyle \tan(x\pm y)={\frac {\tan(x)\pm \tan(y)}{1\mp \tan(x)\tan(y)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b44ab55928ad4fec460396c1c2a69cfedb044f7b)
Tangiad symiau nifer meidraidd o dermau
Gadewch i xi = tan(θi ), ar gyfer i = 1, ..., n. Gadewch i ek fod y polynomial cymesur elfennol gyda gradd k yn y newidynnau xi, i = 1, ..., n, k = 0, ..., n. Yna mae
![{\displaystyle \tan(\theta _{1}+\cdots +\theta _{n})={\frac {e_{1}-e_{3}+e_{5}-\cdots }{e_{0}-e_{2}+e_{4}-\cdots }},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f1265e10551473d7f8178ee0419f881b672331d)
gyda'r nifer o dermau yn dibynnu ar n.
Er enghraifft, mae
![{\displaystyle {\begin{aligned}\tan(\theta _{1}+\theta _{2}+\theta _{3})&{}={\frac {e_{1}-e_{3}}{e_{0}-e_{2}}}={\frac {(x_{1}+x_{2}+x_{3})\ -\ (x_{1}x_{2}x_{3})}{1\ -\ (x_{1}x_{2}+x_{1}x_{3}+x_{2}x_{3})}},\\\\\tan(\theta _{1}+\theta _{2}+\theta _{3}+\theta _{4})&{}={\frac {e_{1}-e_{3}}{e_{0}-e_{2}+e_{4}}}\\\\&{}={\frac {(x_{1}+x_{2}+x_{3}+x_{4})\ -\ (x_{1}x_{2}x_{3}+x_{1}x_{2}x_{4}+x_{1}x_{3}x_{4}+x_{2}x_{3}x_{4})}{1\ -\ (x_{1}x_{2}+x_{1}x_{3}+x_{1}x_{4}+x_{2}x_{3}+x_{2}x_{4}+x_{3}x_{4})\ +\ (x_{1}x_{2}x_{3}x_{4})}},\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a697078eec8f2430079e789c6ad432924e0e86d)
ac yn y blaen. Gellir profi hyn trwy anwythiad mathemategol.
Gellir profi'r canlynol trwy amnewid x = y yn y fformwlâu adio, a defnyddio'r fformwla Pythagoreaidd, neu trwy ddefnyddio fformwla de Moivre gydag n = 2.
![{\displaystyle \sin(2x)=2\sin(x)\cos(x)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b9cf10155d3b5728146762b9ee10d6ed216c31f)
![{\displaystyle \cos(2x)=\cos ^{2}(x)-\sin ^{2}(x)=2\cos ^{2}(x)-1=1-2\sin ^{2}(x)={\frac {1-\tan ^{2}(x)}{1+\tan ^{2}(x)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/105b743fe44c263ee91dbf88fc185aca352739d6)
![{\displaystyle \tan(2x)={\frac {2\tan(x)}{1-\tan ^{2}(x)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57d99b6e1b10884cc61104c1371d3fc081fd1f6d)
![{\displaystyle \cot(2x)={\frac {\cot(x)-\tan(x)}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2c8efe4f7a029579ce04b404d868156493637cb)
Gellir defnyddio'r uchod i ganfod triawdau Pythagoraidd. os mae (a, b, c) yw hyd ochrau triongl ongl-sgwâr, yna mae (a2 − b2, 2ab, c2) hefyd yn ffurfio triongl ongl-sgwâr, lle mae B yw'r ongl a ddyblir. os mae a2 − b2 yn negatif, cymerwch ei wrthdro a defnyddio ongl cyflenwol 2B yn lle 2B.
![{\displaystyle \sin(3x)=3\sin(x)-4\sin ^{3}(x)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e9d64e5dfe795f66377791fc95e69465ff65177)
![{\displaystyle \cos(3x)=4\cos ^{3}(x)-3\cos(x)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87b40ece8023fe1bbb90fc3b276935aa2da1d905)
![{\displaystyle \tan(3x)={\frac {3\tan x-\tan ^{3}x}{1-3\tan ^{2}(x)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/29b374189dca89b6fbcd34386f3a44086de6a461)
Os mai Tn yw'r nfed polynomial Chebyshev, yna mae
![{\displaystyle \cos(nx)=T_{n}(\cos(x)).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9b4526d844a586f31270b00723b66d3beb405e5)
Os mai Sn yw'r nfed polynomial gwasgar, yna mae
![{\displaystyle \sin ^{2}(n\theta )=S_{n}(\sin ^{2}\theta ).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a1693efc925639c3a61280afe7615329dfe7b814)
Fformwla de Moivre:
![{\displaystyle \cos(nx)+i\sin(nx)=(\cos(x)+i\sin(x))^{n}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09e59c63b3c8c62909f3c80ad2f95b4aa5730915)
![{\displaystyle \sin ^{2}(x)={1-\cos(2x) \over 2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d496ff2701236fd04a8c445209cbeba24fa47872)
![{\displaystyle \cos ^{2}(x)={1+\cos(2x) \over 2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2510372d9500a21f5edbb96a2e1d34974250074d)
![{\displaystyle \sin ^{2}(x)\cos ^{2}(x)={1-\cos(4x) \over 8}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2454899e0ec9f4695a1774f2ac7315626dec8394)
![{\displaystyle \sin ^{3}(x)={\frac {3\sin(x)-\sin(3x)}{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4907cff212575e7996cacfaebb6141c82831f702)
![{\displaystyle \cos ^{3}(x)={\frac {3\cos(x)+\cos(3x)}{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d7d558e0c5bf1e1579c8cc6a8ddc147a9e606304)
![{\displaystyle \cos \left({\frac {x}{2}}\right)=\pm \,{\sqrt {\frac {1+\cos(x)}{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82b0d527375ffd7ada07573a2cf511cca943c94b)
![{\displaystyle \sin \left({\frac {x}{2}}\right)=\pm \,{\sqrt {\frac {1-\cos(x)}{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c4739313b0ccc5f43551f1e23731469bea5d939)
![{\displaystyle \tan \left({\frac {x}{2}}\right)={\sin(x/2) \over \cos(x/2)}=\pm \,{\sqrt {1-\cos x \over 1+\cos x}}.\qquad \qquad (1)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/14460442a767d1e88f40dd436a6f56cbca120f72)
![{\displaystyle ={\sin x \over 1+\cos x}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5d08702df0ed94f1de806e23f8f9de7777ed0fbf)
![{\displaystyle ={1-\cos x \over \sin x}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/48c024c3223eb65c4a893a3edf99d53ad8bddd32)
![{\displaystyle \tan \left({\frac {x}{2}}\right)={\frac {\sin(x)}{1+\cos(x)}}={\frac {1-\cos(x)}{\sin(x)}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/23bd1dc644f95c82d6da5bb8f9a4feea93584086)
![{\displaystyle \tan \left({x \over 2}\right)=\csc(x)-\cot(x),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/06256a3f6cabe23eb05904169e5930181ef105a9)
![{\displaystyle \cot \left({x \over 2}\right)=\csc(x)+\cot(x).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c89160ca7dc13f5f15cc345c16d8e69ae7694813)
![{\displaystyle t=\tan \left({\frac {x}{2}}\right),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2fd9c31dd472e898ca3b507a1c8f6815262d6ddc)
|
|
a |
|
a |
|
Amnewidiad o t am tan(x/2) yw hyn, gyda'r canlyniad fod sin(x) yn newid yn 2t/(1 + t2) a cos(x) yn (1 − t2)/(1 + t2). Mae hyn yn ddefnyddiol mewn calcwlws ar gyfer integreiddio ffwythiannau cymarebol o sin(x) a cos(x).
Unfathiannau lluoswm-i-swm
![{\displaystyle \cos \left(x\right)\cos \left(y\right)={\cos \left(x-y\right)+\cos \left(x+y\right) \over 2}\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/10c6b38eba33a944ec79b89d8b35b6b3ddfb5daa)
![{\displaystyle \sin \left(x\right)\sin \left(y\right)={\cos \left(x-y\right)-\cos \left(x+y\right) \over 2}\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb9298c2feb18609cdd19e822da5937ad02c8f2)
![{\displaystyle \sin \left(x\right)\cos \left(y\right)={\sin \left(x-y\right)+\sin \left(x+y\right) \over 2}\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b84f781fcf25789afe9ad25ba6753992b9661af0)
(gw. Theorem Ptolemi)
Unfathiannau swm-i-lluoswm
![{\displaystyle \cos(x)+\cos(y)=2\cos \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/68f1d59fa0f495d292badde74d605b6fb1a99fbc)
![{\displaystyle \sin(x)+\sin(y)=2\sin \left({\frac {x+y}{2}}\right)\cos \left({\frac {x-y}{2}}\right)\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/872769ce96c5ebed12e2ba673349558fd52bfc9d)
![{\displaystyle \cos(x)-\cos(y)=-2\sin \left({x+y \over 2}\right)\sin \left({x-y \over 2}\right)\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc5034e131914a0d45a619385bbb20cbc69435ad)
![{\displaystyle \sin(x)-\sin(y)=2\cos \left({x+y \over 2}\right)\sin \left({x-y \over 2}\right)\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39b39d0b03353bb1441761cb669ad7d3a63b683b)
fformwla de Moivre
![{\displaystyle {\mbox{os mae }}x+y+z=\pi ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c9182485f932e1eb68a2f67afbac8e128a03025)
![{\displaystyle {\mbox{yna mae }}\tan(x)+\tan(y)+\tan(z)=\tan(x)\tan(y)\tan(z).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/22aeebaae581b103cc3f97df1cfc5230682cbacc)
(Os am roi ystyr i'r fformwla tra fod unrhyw un o x, y, a z yn ongl sgwâr, rhaid cymryd mai ∞ yw'r ddau ochr. Nid +∞ neu −∞ yw hyn, ond un pwynt "at anfeidredd" a ychwanegir i'r linell rif real.)
![{\displaystyle {\mbox{Os mae }}x+y+z=\pi ={\mbox{hanner cylch,}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9df143c3129402b9e603db16c91e07996b342431)
![{\displaystyle {\mbox{yna mae }}\sin(2x)+\sin(2y)+\sin(2z)=4\sin(x)\sin(y)\sin(z).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8f1c23b250444b2f7842d2c62cc38a3c5c9cb408)
Ffwythiannau trigonometrig gwrthdro
![{\displaystyle \arcsin(x)+\arccos(x)=\pi /2\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/91232cec02d1ec0dad74d405b3a87f4ed4749cf4)
![{\displaystyle \arctan(x)+\operatorname {arccot}(x)=\pi /2.\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c32267126e0fa9e0ff3e02a599c5f61ff1851f7d)
![{\displaystyle \arctan(x)+\arctan(1/x)=\left\{{\begin{matrix}\pi /2,&{\mbox{Os mae }}x>0\\-\pi /2,&{\mbox{os mae }}x<0\end{matrix}}\right.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/44fbcfb9222b49c8bc38b331d5005c1a7db8605e)
![{\displaystyle \arctan(x)+\arctan(y)=\arctan \left({\frac {x+y}{1-xy}}\right)+\left\{{\begin{matrix}\pi ,&{\mbox{os mae }}x,y>0\\-\pi ,&{\mbox{os mae }}x,y<0\\0,&{\mbox{fel arall }}\end{matrix}}\right.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b50cb341372f76ff1902c7e2fa523eedcd2ff86d)
![{\displaystyle \sin[\arccos(x)]={\sqrt {1-x^{2}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/89020e4173e7c25657019ade3629e832bb572ff7)
![{\displaystyle \cos[\arcsin(x)]={\sqrt {1-x^{2}}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6123652c97881e3910234616ea5ee831deae4a73)
![{\displaystyle \sin[\arctan(x)]={\frac {x}{\sqrt {1+x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d3ed8cedb4c73b01b65314a15152647c9000086)
![{\displaystyle \cos[\arctan(x)]={\frac {1}{\sqrt {1+x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d2e67d269ac585855446bba315fc260582bc38be)
![{\displaystyle \tan[\arcsin(x)]={\frac {x}{\sqrt {1-x^{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/35f9ce679263ce5306237e3342d22abeb3d9d346)
![{\displaystyle \tan[\arccos(x)]={\frac {\sqrt {1-x^{2}}}{x}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/22e131c5707de0e5ab51c45a4c518f8b137ffb99)
Perthynas gyda'r ffwythiant esbonyddol cymhlyg
![{\displaystyle e^{ix}=\cos(x)+i\sin(x)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b697198af2e7ace6cc64c8c6c4aca34e9860bb41)
![{\displaystyle e^{-ix}=\cos(x)-i\sin(x)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ac286019b1f1c541ec09454a0ea582db8c9233b0)
![{\displaystyle \cos(x)={\frac {e^{ix}+e^{-ix}}{2}}\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c8f52446887052c87511159b7b8113f3bc4cb092)
![{\displaystyle \sin(x)={\frac {e^{ix}-e^{-ix}}{2i}}\;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/524466c42d884cea2a537eaa9e29eec04431381b)
lle mae i 2 = −1.
Gw. fformwla Euler.
Diffiniadau esbonyddol
![{\displaystyle \sin(\theta )={\frac {e^{i\theta }-e^{-i\theta }}{2i}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d4e874525d4dffb0befa7819f09c851634ef461f)
![{\displaystyle \cos(\theta )={\frac {e^{i\theta }+e^{-i\theta }}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ac776ca1ccc5f9023eaf58a397f5c4338082faa)
![{\displaystyle \tan(\theta )={\frac {\sin(\theta )}{\operatorname {cosh} (\theta )}}={\frac {({\frac {e^{i\theta }-e^{-i\theta }}{2i}})}{({\frac {e^{i\theta }+e^{-i\theta }}{2}})}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ae2d22b40f01f30db1dd48f5c298d133b60a229a)
![{\displaystyle \cot(\theta )={\frac {\cos(\theta )}{\sin(\theta )}}={\frac {({\frac {e^{i\theta }+e^{-i\theta }}{2}})}{({\frac {e^{i\theta }-e^{-i\theta }}{2i}})}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f8bc413670625647865fb52b12f81c124b8bfe1)
![{\displaystyle \sec(\theta )={\frac {1}{\cos(\theta )}}={\frac {1}{({\frac {e^{i\theta }+e^{-i\theta }}{2}})}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b69c291bdae7016fa9a2c9932d3f6ee0a10f4573)
![{\displaystyle \csc(\theta )={\frac {1}{\sin(\theta )}}={\frac {1}{({\frac {e^{i\theta }-e^{-i\theta }}{2i}})}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0bad33de7154cd9423a713241ae9f40c97c932f8)
![{\displaystyle \operatorname {versin} (\theta )=1-\cos(\theta )=1-{\frac {e^{i\theta }+e^{-i\theta }}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/64d272bcb4f86e2798057bbf000616b39a08c752)
![{\displaystyle \operatorname {vercos} (\theta )=1-\sin(\theta )=1-{\frac {e^{i\theta }-e^{-i\theta }}{2i}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/49c7c828215c65f4225bf6915a49cae1fca0a624)
![{\displaystyle \operatorname {exsec} (\theta )=\operatorname {sec} (\theta )-1\ ={\frac {1}{\cos(\theta )}}-1={\frac {1}{({\frac {e^{i\theta }+e^{-i\theta }}{2}})}}-1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb02bbe89f027884d7dc5b73c87a680b4affbd82)
![{\displaystyle \operatorname {excsc} (\theta )=\operatorname {csc} (\theta )-1\ ={\frac {1}{\sin(\theta )}}-1={\frac {1}{({\frac {e^{i\theta }-e^{-i\theta }}{2i}})}}-1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ec9f7136ae83e45f4cf33945192ba2adff704d56)
![{\displaystyle \operatorname {sinh} (\theta )=-i\sin(i\theta )={\frac {e^{\theta }-e^{-\theta }}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/afe1e27bfc242a29a2f4ac9498e66844c9070262)
![{\displaystyle \operatorname {cosh} (\theta )=\cos(i\theta )={\frac {e^{\theta }+e^{-\theta }}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e123f0b3b10297ce06530c785d9f06452312703b)
![{\displaystyle \operatorname {tanh} (\theta )=-i\tan(i\theta )={\frac {\operatorname {sinh} (\theta )}{\operatorname {cosh} (\theta )}}={\frac {e^{\theta }-e^{-\theta }}{e^{\theta }+e^{-\theta }}}={\frac {e^{2\theta }-1}{e^{2\theta }+1}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c903b864c6adfa517f325fce66ada4e3769bae)
![{\displaystyle \operatorname {coth} (\theta )=i\operatorname {cot} (i\theta )={\frac {\operatorname {cosh} (\theta )}{\operatorname {sinh} (\theta )}}={\frac {e^{\theta }+e^{-\theta }}{e^{\theta }-e^{-\theta }}}={\frac {e^{2\theta }+1}{e^{2\theta }-1}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b0d36168c3727fcf5c82c63b883b2138718a1b62)
![{\displaystyle \operatorname {sech} (\theta )={\frac {1}{\operatorname {cosh} (\theta )}}=\operatorname {sec} (i\theta )={\frac {2}{e^{\theta }+e^{-\theta }}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/950825b1ed6242e09146aae4d5ac1761e6926e1d)
![{\displaystyle \operatorname {csch} (\theta )={\frac {1}{\operatorname {sinh} (\theta )}}=i\cos(i\theta )={\frac {2}{e^{\theta }-e^{-\theta }}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bd541ab34dbd69c378c813e27f9d957c88cb9cda)
![{\displaystyle \operatorname {versinh} (\theta )=1-\cos(i\theta )=1-{\frac {e^{\theta }+e^{-\theta }}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ee8af699c13e35aab390822e1d253f9046d6cb83)
![{\displaystyle \operatorname {vercosh} (\theta )=1+i\sin(i\theta )=1-{\frac {e^{\theta }-e^{-\theta }}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe1dc1a3d1ee93cabb39894f4559aa7367da0abc)
![{\displaystyle \operatorname {exsech} (\theta )=\operatorname {sech} (\theta )-1={\frac {1}{\operatorname {cosh} (\theta )}}-1=\operatorname {sec} (i\theta )={\frac {2}{e^{\theta }+e^{-\theta }}}-1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6204b744b5a484f0ae047dfc88a89fd5a3e78f49)
![{\displaystyle \operatorname {excsch} (\theta )=\operatorname {csch} (\theta )-1={\frac {1}{\operatorname {sinh} (\theta )}}-1=i\cos(i\theta )={\frac {2}{e^{\theta }-e^{-\theta }}}-1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/db05f8d93d24e68434976fed4f4154dd975225c9)
![{\displaystyle \arcsin(\theta )=-i\ln(i\theta +{\sqrt {1-\theta ^{2}}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/22dffd3061c4d2954c55b5f26eb5b7a89c68d65b)
![{\displaystyle \arccos(\theta )=-i\ln(\theta +i{\sqrt {1-\theta ^{2}}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7d51e42e025da21c2d39bd8e5415b4cf8a03c8f6)
![{\displaystyle \arctan(\theta )={\frac {\ln({\frac {i+\theta }{i-\theta }})i}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/274d44f7cfd29cca59f255f1b27efb8543d27002)
![{\displaystyle \operatorname {arccot}(\theta )=\arctan(-\theta )={\frac {i\ln({\frac {i-\theta }{i+\theta }})}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aebabc84463b32421c5e8634aca236e66ccce13d)
![{\displaystyle \operatorname {arcsec}(\theta )=\arccos(\theta ^{-1})=-i\ln(\theta ^{-1}+{\sqrt {1-\theta ^{-2}}}i)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9e613d0d00ec65fb77adc2f24178fcafe3319e4d)
![{\displaystyle \operatorname {arccsc}(\theta )=\arcsin(\theta ^{-1})=-i\ln(i\theta ^{-1}+{\sqrt {1-\theta ^{-2}}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ae70573f9dbffe889b713c4bf793f9d4e04c0f45)
![{\displaystyle \operatorname {arcversin} (\theta )=\arccos(1-\theta )=-i\ln(1-\theta +i{\sqrt {1-(1-\theta )^{2}}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3084bcdcc2d98557c7633ad1c002898347040350)
![{\displaystyle \operatorname {arcvercos} (\theta )=\operatorname {arcsin} (1-\theta )=-i\ln(i-i\theta +{\sqrt {1-(1-\theta )^{2}}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/086227917b07e01ececb3dbdeaf3f6dfb605d9d3)
![{\displaystyle \operatorname {arcexsec} (\theta )=\operatorname {arcsec}(1+\theta )=-i\ln((\theta +1)^{-1}+i{\sqrt {1-(1+\theta )^{2}}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9cd14c07a8785374ca5247717f246293fe860e54)
![{\displaystyle \operatorname {arcexcsc} (\theta )=\operatorname {arccsc}(1+\theta )=-i\ln(i(\theta +1)^{-1}+{\sqrt {1-(1+\theta )^{2}}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f12b3f508e3668670239b8ded7190254e5c9ccf)
![{\displaystyle \operatorname {arcsinh} (\theta )=\ln(\theta +{\sqrt {\theta ^{2}+1}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8d41542ef0273d65dacb600bec84f21ad48877e9)
![{\displaystyle \operatorname {arccosh} (\theta )=\ln(\theta +{\sqrt {\theta ^{2}-1}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90285a6937883b14a7acbe00033a3ce0f8cc0af0)
![{\displaystyle \operatorname {arctanh} (\theta )={\frac {\ln({\frac {i+\theta }{i-\theta }})}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fe383bc88fe2adf32ecea783e1a0b781a84685b3)
![{\displaystyle \operatorname {arccoth} (\theta )=\operatorname {arctanh} (-\theta )={\frac {\ln({\frac {i-\theta }{i+\theta }})}{2}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/295ea55699cfcf31fe70a748b22de53a338f3757)
![{\displaystyle \operatorname {arcsech} (\theta )=\operatorname {arccosh} (\theta ^{-1})=\ln(\theta ^{-1}+{\sqrt {\theta ^{-2}-1}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb053915a0df9f5d416261550c7fc4d2a1bdabf3)
![{\displaystyle \operatorname {arccsch} (\theta )=\operatorname {arcsinh} (\theta ^{-1})=\ln(\theta ^{-1}+{\sqrt {\theta ^{-2}+1}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aae86077d0dce5f30adde04e8a3a7c1579706988)
![{\displaystyle \operatorname {arcversinh} (\theta )=\operatorname {arccosh} (\theta )-1=\ln(\theta +{\sqrt {\theta ^{2}-1}})-1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bf93007e2c2ee19ddd31916fe332e80d5159400e)
![{\displaystyle \operatorname {arcvercosh} (\theta )=\operatorname {arcsinh} (\theta )-1=\ln(\theta +{\sqrt {\theta ^{2}+1}})-1\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0421593c2d12704a1a517180b0382e8f293084fb)
![{\displaystyle \operatorname {arcexsech} (\theta )=\operatorname {arcsech} (\theta +1)=\operatorname {arccosh} ((\theta +1)^{-1})=\ln((\theta +1)^{-1}+{\sqrt {(\theta +1)^{-2}-1}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc7d5a760d5d84b8426a0f0773beac7e9d58566)
![{\displaystyle \operatorname {arcexcsch} (\theta )=\operatorname {arccsch} (\theta +1)=\operatorname {arcsinh} ((\theta +1)^{-1})=\ln((\theta +1)^{-1}+{\sqrt {(\theta +1)^{-2}+1}})\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/04150fd351f813ba1edff7f970dad28ff96b1979)
|