![](//upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Crystal128-pipe.svg/25px-Crystal128-pipe.svg.png) |
Aquest article o secció no cita les fonts o necessita més referències per a la seva verificabilitat. |
Un número cabtaxi, en matemàtiques, el n número cabtaxi, sovint anomenat Cabtaxi(n), és definit com el més petit enter que es pot escriure en n maneres o maneres diferents (en un ordre de termes aproximats) com a suma de dos cubs positius, nuls o negatius. Els nombres cabtaxi existeixen per a tot n ≥ 1; fins a abril de 2014 es coneixen 10 nombres cabtaxi:
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (1)&=&1&=&1^{3}+0^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c9147c4965ad713563a292874efc686997b2fe98)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (2)&=&91&=&3^{3}+4^{3}\\&&&=&6^{3}-5^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a24b6c5d123f69cbe59369417c6c997bcd501a99)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (3)&=&728&=&6^{3}+8^{3}\\&&&=&9^{3}-1^{3}\\&&&=&12^{3}-10^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e0a7ff6e77c8b066cde36e763c54384bf75b7be)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (4)&=&2741256&=&108^{3}+114^{3}\\&&&=&140^{3}-14^{3}\\&&&=&168^{3}-126^{3}\\&&&=&207^{3}-183^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/efea49d39ce20aa88c2792763fca4b92c61774a1)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (5)&=&6017193&=&166^{3}+113^{3}\\&&&=&180^{3}+57^{3}\\&&&=&185^{3}-68^{3}\\&&&=&209^{3}-146^{3}\\&&&=&246^{3}-207^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/be26a95660b2d50abf8f6c69409df29170bd5612)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (6)&=&1412774811&=&963^{3}+804^{3}\\&&&=&1134^{3}-357^{3}\\&&&=&1155^{3}-504^{3}\\&&&=&1246^{3}-805^{3}\\&&&=&2115^{3}-2004^{3}\\&&&=&4746^{3}-4725^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bac518a0cd8b576aee915a2c51a1f03fb99d274f)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (7)&=&11302198488&=&1926^{3}+1608^{3}\\&&&=&1939^{3}+1589^{3}\\&&&=&2268^{3}-714^{3}\\&&&=&2310^{3}-1008^{3}\\&&&=&2492^{3}-1610^{3}\\&&&=&4230^{3}-4008^{3}\\&&&=&9492^{3}-9450^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6041886a352e89876eba385078c3a09f1e0faaf4)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (8)&=&137513849003496&=&22944^{3}+50058^{3}\\&&&=&36547^{3}+44597^{3}\\&&&=&36984^{3}+44298^{3}\\&&&=&52164^{3}-16422^{3}\\&&&=&53130^{3}-23184^{3}\\&&&=&57316^{3}-37030^{3}\\&&&=&97290^{3}-92184^{3}\\&&&=&218316^{3}-217350^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80809d03e23714844adf43a447e49fdc3c323b35)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (9)&=&424910390480793000&=&645210^{3}+538680^{3}\\&&&=&649565^{3}+532315^{3}\\&&&=&752409^{3}-101409^{3}\\&&&=&759780^{3}-239190^{3}\\&&&=&773850^{3}-337680^{3}\\&&&=&834820^{3}-539350^{3}\\&&&=&1417050^{3}-1342680^{3}\\&&&=&3179820^{3}-3165750^{3}\\&&&=&5960010^{3}-5956020^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fca672ab692705ef3c816fb6b110e81a626160be)
![{\displaystyle {\begin{matrix}\mathrm {Cabtaxi} (10)&=&933528127886302221000&=&77480130^{3}-77428260^{3}\\&&&=&41337660^{3}-41154750^{3}\\&&&=&18421650^{3}-17454840^{3}\\&&&=&10852660^{3}-7011550^{3}\\&&&=&10060050^{3}-4389840^{3}\\&&&=&9877140^{3}-3109470^{3}\\&&&=&9781317^{3}-1318317^{3}\\&&&=&9773330^{3}-84560^{3}\\&&&=&8444345^{3}+6920095^{3}\\&&&=&8387730^{3}+7002840^{3}\end{matrix}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72e477f7c863b09535a6d7a606c37c8a69f68163)
O en un gràfic més clar:
n
|
Ca(n)
|
a^3+b^3
|
|
Descobridor
|
1
|
1
|
1,0
|
|
|
2
|
91
|
3,4 6,-5
|
|
|
3
|
728
|
6,8 9,-1 12,-10
|
|
|
4
|
2741256
|
2421,19083 140,-14 168,-126 207,-183
|
|
|
5
|
6017193
|
166,113 180,57 185,-68 209,-146 246,-207
|
|
Randall L. Rathbun
|
6
|
1412774811
|
963,804 1134,-357 1155,-504 1246,-805 2115,-2004 4746,-4725
|
|
Randall L. Rathbun
|
7
|
11302198488
|
1926,1608 1939,1589 2268,-714 2310,-1008 2492,-1610 4230,- 4008 9492,-9450
|
|
Randall L. Rathbun
|
8
|
137513849003496
|
22944,50058 36547,44597 36984,44298 52164,-16422 53130,-23184 57316,-37030 97290,-92184 218316,-217350
|
|
Daniel J. Bernstein
|
9
|
424910390480793000
|
645210,538680 649565,532315 752409,-101409 759780,-239190 773850,-337680 834820,-539350 1417050,-1342680 3179820,-3165750 5960010,-5956020
|
|
Duncan Moore
|
Els nombres Cabtaxi(5), Cabtaxi(6) i Cabtaxi(7) han estat trobats per Randall L. Rathbun; i el Cabtaxi(8) per Daniel J. Bernstein, que ha demostrat que Cabtaxi(9) ≥ 1019, mentre que Duncan Moore, al 2005, trobà els nombres que correspondrien a Cabtaxi (9).
Vegeu també
|