পৰিমেয় সংখ্যাপৰিমেয় সংখ্যা (ইংৰাজী: Rational numbers) ইয়াক ইংৰাজী 'Q' আখৰটোৰে বুজোৱা হয়। যিবোৰ সংখ্যাক p/q আকাৰত প্ৰকাশ কৰিব পাৰি, য'ত p আৰু q দুটা অখণ্ড সংখ্যা আৰু q-টো কেতিয়াও 0(শূন্য) নহয়, তেনে সংখ্যাকে পৰিমেয় সংখ্যা বুলি কোৱা হয়। যেনে: ১/২, ২/৫, ১২/১৩ ইত্যাদি। [1] প্ৰতিটো অখণ্ড সংখ্যা একো একোটা পৰিমেয় সংখ্যা, যিহেতু প্ৰতিটো অখণ্ড সংখ্যাক ভগ্নাংশ ৰূপত লিখিলে ইহঁতৰ লব সদায় ১(এক)। উদাহৰণ স্বৰূপে ৪(চাৰি) এটা পৰিমেয় সংখ্যা, ইয়াক ৪/১, ৮/২ ইত্যাদি ৰূপত প্ৰকাশ কৰিব পাৰি। প্ৰত্যেক পৰিমেয় সংখ্যাকে এটা আবৃত্ত দশমিকত প্ৰকাশ কৰিব পাৰি। (উদাহৰণ: ৩/৪ = ০.৭৫)বা ই নিৰবধি। অৰ্থাৎ দশমিকৰ পিছত ই একে আবৃত্ত সংখ্যাকে পুনৰাবৃত্তি কৰিব পাৰে। ৯/৪৪ = ০.২০৪৫৪৫৪৫৪৫...).[2] যদি এটা বাস্তৱ সংখ্যা পৰিমেয় নহয়, তেন্তে ইয়াক অপৰিমেয় সংখ্যা বোলে।[3] অপৰিমেয় সংখ্যাৰ উদাহৰণ হৈছে: √২, π, e, আৰু φ. অপৰিমেয় সংখ্যাৰ দশমিক অংশৰ পুনৰাবৃত্তি নোহোৱাকৈ ই অসীমলৈ গতি কৰে। অপৰিমেয় সংখ্যাৰ সংহতিটো এটা সসীম সংহতি, বিপৰীতে বাস্তৱ সংখ্যাৰ সংহতিটো অসমী সংহতি। প্ৰায় সংখ্যক বাস্তৱ সংখ্যাই অপৰিমেয়।[1] গাণিতিক ব্যাখ্যাঅপৰিবৰ্তনীয় ভগ্নাংশপ্ৰতিটো পৰিমেয় সংখ্যাকে সম্ভৱত এক বিশেষ ৰূপত প্ৰকাশ কৰিব পাৰি। তেনে এক ৰূপ হ'ল অপৰিবৰ্তনীয় ভগ্নাংশ a/b, য'ত a আৰু b হৈছে সহ-মৌলিক সংখ্যা আৰু b > 0। ইয়াক আদৰ্শ ঠাঁচৰ পৰিমেয় সংখ্যা বুলি কোৱা হয়। পৰিমেয় সংখ্যা এটাক আদৰ্শ ঠাঁচত প্ৰকাশ কৰিবলৈ হৰ আৰু লবৰ গৰিষ্ঠ সাধাৰণ উৎপাদকৰে উভয়কে হৰণ কৰিব লাগে। আকৌ যদি হৰ ঋণাত্মক থাকে তেন্তে হৰণ কৰিব লগীয়া গৰিষ্ঠ সাধাৰণ উৎপাদকৰ চিন পৰিৱৰ্তন কৰা হয়। অখণ্ড সংখ্যাৰ পৰিমেয় ৰূপযিকোনো অখণ্ড সংখ্যা nক পৰিমেয় ৰূপত n/1 আকাৰে প্ৰকাশ কৰিব পাৰি আৰু ই এক আদৰ্শ ঠাঁচৰ পৰিমেয় সংখ্যা। সমতা
যদি দুয়োটা ভগ্নাংশ আদৰ্শ ঠাঁচত থাকে, তেন্তে:
ক্ৰমিকযদিহে দুয়োটা হৰ ধনাত্মক (বিশেষকৈ যদি দুয়োটা ভগ্নাংশ আদৰ্শ ঠাঁচত থাকে):
আনহাতে যদিহে হৰ ঋণাত্মক হয় তেন্তে প্ৰতিটো ঋণাত্মক হৰৰ ভগ্নাংশকে চিনৰ পৰিৱৰ্তন কৰি প্ৰথমে ইয়াৰ ধনাত্মক হৰৰ সমতুল্য ভগ্নাংশলৈ পৰিৱৰ্তন কৰিব লাগিব। যোগদুটা ভগ্নাংশ তলত দিয়া ধৰণে যোগ কৰা হয়: যদিহে দুয়োটা ভগ্নাংশ আদৰ্শ ঠাঁচত থাকে তেন্তে ইহঁতৰ যোগফলো এটা আদৰ্শ ঠাঁচৰ ভগ্নাংশ হ'ব যদি আৰু কেৱল যদিহে b আৰু d দুটা সহ-মৌলিক অখণ্ড সংখ্যা। বিয়োগযদি দুয়োটা ভগ্নাংশ আদৰ্শ ঠাঁচত থাকে, তেন্তে ইয়াৰ বিয়োগফলো এটা আদৰ্শ ঠাঁচৰ পৰিমেয় সংখ্যা হ'ব যদি আৰু কেৱল যদিহে b আৰু d সহ-মৌলিক। পূৰণপূৰণৰ ক্ষেত্ৰত থকা নিয়ম হ'ল: দুয়োটা মূল ভগ্নাংশ আদৰ্শ ঠাঁচত থাকিলেও ইহঁতৰ পুৰণফল লঘিষ্ঠ আকাৰত প্ৰকাশ যোগ্য ভগ্নাংশ হ'ব পাৰে। প্ৰতিক্ৰমপ্ৰতিটো পৰিমেয় সংখ্যাa/bৰে একোটা যোগাত্মক বিপৰীত সংখ্যা থাকে। যদি a/b এক আদৰ্শ ঠাঁচৰ পৰিমেয় সংখ্যা তেন্তে ইয়াৰ বিপৰীতৰ বাবেও ই সত্য। এটা অশূন্য পৰিমেয় সংখ্যা a/bৰ এটা গুণাত্মক বিপৰীত সংখ্যা থাকে। ইয়াক সংখ্যাটোৰ প্ৰতিক্ৰম বোলে। যদি a/b এটা আদৰ্শ ঠাঁচৰ পৰিমেয় সংখ্যা তেন্তে, ইয়াৰ প্ৰতিক্ৰমৰ আদৰ্শ ৰূপ হ'ব: বা , ধনাত্মক বা ঋণাত্মক aৰ ওপৰত নিৰ্ভৰশীল। হৰণযদি b, c, আৰু d অশূন্য তেন্তে হৰণৰ নিয়মটো হৈছে: a/bকc/d ৰে হৰণ কৰিলে হৰণফলটো a/b আৰু c/dৰ প্ৰতিক্ৰমৰ পুৰণফলৰ সমান হ'ব। অখণ্ড সংখ্যাৰ সূচকীয় ৰূপযদি n এটা অশূন্য ধনাত্মক অখণ্ড সংখ্যা, তেন্তে ফলাফলটো এটা আদৰ্শ ঠাঁচৰ সংখ্যা হ'ব যদিহে ই a/bৰ ক্ষেত্ৰটো সত্য হয়। বিশেষকৈ, যদি a ≠ 0, তেন্তে যদি a/b এটা আদৰ্শ ঠাঁচৰ সংখ্যা তেন্তে ফলাফলটোৰ আদৰ্শ ৰূপটো হ'ব: যদিহে a > 0 বা n যিকোনো এটা যুগ্ম হয়। নতুবা ফলাফলটোৰ আদৰ্শ ৰূপটো হ'ব: তথ্যউৎস
|
Portal di Ensiklopedia Dunia