نتريد البورون

نتريد البورون
نتريد البورون
نتريد البورون
الاسم النظامي (IUPAC)

Boron nitride

المعرفات
رقم CAS 10043-11-5
بوب كيم (PubChem) 66227
مواصفات الإدخال النصي المبسط للجزيئات
الخواص
الصيغة الجزيئية BN
الكتلة المولية 24.82 غ/مول
المظهر صلب عديم اللون
الكثافة 2.25 غ/سم3 (الشكل α-BN السداسي)
3.45 غ/سم3 (الشكل β-BN المكعّب)
نقطة الانصهار 2967 °س
الذوبانية في الماء غير منحل
في حال عدم ورود غير ذلك فإن البيانات الواردة أعلاه معطاة بالحالة القياسية (عند 25 °س و 100 كيلوباسكال)

نتريد البورون هو مركب كيميائي من البورون والنتروجين، له الصيغة الكيميائية BN. ينتمي المركب إلى مجموعة النتريدات، ويكون على شكل صلب عديم اللون.

يوجد شكلان أساسيان من نتريد البورون، وهما الشكل ألفا α-BN، والذي له بنية سداسية، ويرمز له hBN؛ أما الشكل الثاني فهو الشكل بيتا β-BN، والذي له بنية مكعبة، ويرمز له cBN. يعد الشكل المكعب من نتريد البورون من أكثر المواد الاصطناعية من حيث القساوة والصلابة، وذلك بشكل مقارب لصلابة الألماس.

التحضير

يحضر نتريد البورون السداسي من تفاعل أكسيد البورون B2O3 أو حمض البوريك B(OH)3 مع الأمونياك أو اليوريا في جو من غاز النتروجين:[3]

يكون نتريد البورون الناتج لابلورياً، وله نقاوة تتراوح بين 92–95%، مع وجود شوائب من أكسيد البورون، والذي يمكن إزالته من الناتج بإجراء عملية تبخير في خطوة ثانية، برفع درجات الحرارة فوق 1500 °س، للحصول على نتريد البورون السداسي النقي.[4]

يمكن الحصول على طبقات رقيقة من نتريد البورون بإجراء عملية ترسيب كيميائي للبخار من ثلاثي كلوريد البورون ومركبات طليعيّة حاوية على النتروحين.[5]

يحصل على نتريد البورون المكعب بتطبيق ضغوط ودرجات حرارة مرتفعة على الشكل السداسي من نتريد البورون.

الخواص

ففي بنية نتريد البورون المكعبة المشابهة لبنية الألماس، والتي تسمى بورازون، فإن ذرات البورون توجد في بنية جزيئية رباعية السطوح كما في ذرات الكربون في الألماس، ولكن واحدة من كل أربع روابط B-N تكون على شكل رابطة تساهمية تناسقية. يكون للبورازون صلادة مقاربة للألماس، لذلك يستخدم كمادة ساحجة. في نتريد البورون الذي له بنية مشابهة للغرافيت، أو يعرف تحت اسم نتريد البورون سداسي الأضلاع (h-BN)، فإن ذرات البورون المشحون إيجاباً والنتروجين المشحونة سلباً في كل مستوي تتوضع بشكل مقارب إلى الذرات المعاكسة للشحنة في المستوي المقابل. بناء على ذلك، فإن خصائص h-BN والغرافيت مختلفة تماماً.

الاستخدامات

يستخدم مركب h-BN كمزلق في بعض التطبيقات الخاصة حيث تنزلق المستويات بسهولة، بالمقابل فإن لمركب h-BN ناقلية كهربائية وحرارية ضعيفة على الاتجاه المستوي.[6][7] يشكل نتريد البورون السداسي طبقات ذرية يمكن أن تزيد من حركية الإلكترون في الأجهزة الحاوية على الغرافين.[8][9] كما أن نتريد البورون يمكن أن يشكل أنابيب نانوية لها العديد من الخصائص المميزة، مثل المتانة والثباتية الكيميائية والناقلية الحرارية.[10]

المصادر

  1. ^ ا ب ج Boron nitride (بالإنجليزية), QID:Q278487
  2. ^ ChEBI release 2020-09-01، 1 سبتمبر 2020، QID:Q98915402
  3. ^ S. Rudolph (2000). "Boron Nitride (BN)". American Ceramic Society Bulletin. ج. 79: 50. مؤرشف من الأصل في 2015-06-23. اطلع عليه بتاريخ أكتوبر 2020. {{استشهاد بدورية محكمة}}: تحقق من التاريخ في: |تاريخ الوصول= (مساعدة)
  4. ^ "Synthesis of Boron Nitride from Oxide Precursors". مؤرشف من الأصل في 2007-12-12. اطلع عليه بتاريخ 2009-06-06.
  5. ^ P. B. Mirkarimi؛ وآخرون (1997). "Review of Advances in Cubic Boron Nitride Film Synthesis". Materials Science and Engineering R Reports. ج. 21 ع. 2: 47–100. DOI:10.1016/S0927-796X(97)00009-0. {{استشهاد بدورية محكمة}}: Explicit use of et al. in: |مؤلف= (مساعدة)
  6. ^ Engler, M. (2007). "Hexagonal Boron Nitride (hBN) – Applications from Metallurgy to Cosmetics" (PDF). Cfi/Ber. DKG. ج. 84: D25. ISSN:0173-9913. مؤرشف من الأصل (PDF) في 2013-06-13.
  7. ^ Greim, Jochen and Schwetz, Karl A. (2005). Boron Carbide, Boron Nitride, and Metal Borides, in Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH: Weinheim. DOI:10.1002/14356007.a04_295.pub2.{{استشهاد بكتاب}}: صيانة الاستشهاد: أسماء متعددة: قائمة المؤلفين (link)
  8. ^ Dean، C.R.؛ Young، A.F.؛ Meric، I.؛ Lee، C.؛ Wang، L.؛ Sorgenfrei، S.؛ Watanabe، K.؛ Taniguchi، T.؛ Kim، P.؛ Shepard، K. L.؛ Hone، J. (2010). "Boron nitride substrates for high-quality graphene electronics". Nature Nanotechnology. ج. 5 ع. 10: 722–726. arXiv:1005.4917. Bibcode:2010NatNa...5..722D. DOI:10.1038/nnano.2010.172. PMID:20729834.
  9. ^ Gannett، W.؛ Regan، W.؛ Watanabe، K.؛ Taniguchi، T.؛ Crommie، M. F.؛ Zettl، A. (2010). "Boron nitride substrates for high mobility chemical vapor deposited graphene". Applied Physics Letters. ج. 98 ع. 24: 242105. arXiv:1105.4938. Bibcode:2011ApPhL..98x2105G. DOI:10.1063/1.3599708.
  10. ^ Zettl، Alex؛ Cohen، Marvin (2010). "The physics of boron nitride nanotubes". Physics Today. ج. 63 ع. 11: 34–38. Bibcode:2010PhT....63k..34C. DOI:10.1063/1.3518210.