مكونات متوافقة الطور ومتعامدة
رسم بياني يوضح تشكيل الطور[(φ (t] وهي دالة غير خطية تتزايد من 0 إلى π / 2 خلال الفترة (t) ما بين 0 و 16 . ويعرف المكونان المؤلفان من تشكيل السعة باسم مكون متوافق الطور (I ، الخط الرفيع الأزرق، دالة تناقصية) ومكون تربيعي أو عامودي (Q ،الخط الرفيع الأحمر، دالة تزيادية).
في الهندسة الكهربائية ، يمكن تفكيك أو توليف الدالة الجيبية [
sin
(
x
)
{\displaystyle \sin(x)}
] ذات تشكيل زاوي (angle modulation ) من دالتين جيبية مشكّلة بالسعة (amplitude-modulated ) التي يتم تعويضها في الطور بربع دورة (π / 2 راديان). جميع الدوال الثلاث لها نفس التردد. تعرف الدوال الجيبية المشكلة بالسعة بالموجات العامودية متوافقة الطور. في بعض السياقات يكون من الملائم أكثر الإشارة إلى تشكيل السعة (القاعدي) فقط بهذه الشروط.[ 1]
عندما يتم تطبيق جهد جيبي إما على مكثف بسيط أو ملف كهربائي ، فإن التيار الناتج الذي يتدفق يتعامد "عامودي" مع الجهد.
نموذج الإشارة ذات النطاق الضيق
في تطبيقات تشكيل الزاوية، مع تردد الموجة الحاملة f, φ هي أيضاً دالة متغير الزمن،[ 2] :
*يحتاج تعديل هذا القسم*
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
[ 3]
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mn>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mn><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mn>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mn><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></mrow><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></munder></mrow><mrow class="MJX-TeXAtom-ORD"><mtext>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mtext></mrow></munder><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mrow><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mrow><mn>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mn><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mrow class="MJX-TeXAtom-ORD"><mfrac><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mn>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mn></mfrac></mrow></mrow><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></mrow></mrow><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></mover></mrow><mrow class="MJX-TeXAtom-ORD"><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mn>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mn><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></mrow></mover><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mi>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mi><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo><mo stretchy="false">
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></mrow><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></munder></mrow><mrow class="MJX-TeXAtom-ORD"><mtext>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mtext></mrow></munder><mo>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
</mo></mrow>
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
{\displaystyle }
sin
[
2
π
f
t
+
ϕ
(
t
)
]
=
sin
(
2
π
f
t
)
⋅
cos
[
ϕ
(
t
)
]
⏟
in-phase
+
sin
(
2
π
f
t
+
π
2
)
⏞
cos
(
2
π
f
t
)
⋅
sin
[
ϕ
(
t
)
]
⏟
quadrature
.
{\displaystyle \sin[2\pi ft+\phi (t)]\ =\ \underbrace {\sin(2\pi ft)\cdot \cos[\phi (t)]} _{\text{in-phase}}\,+\,\underbrace {\overbrace {\sin \left(2\pi ft+{\tfrac {\pi }{2}}\right)} ^{\cos(2\pi ft)}\cdot \sin[\phi (t)]} _{\text{quadrature}}.}
[ 4]
</img>
مراجع
انظر أيضا
وصلات خارجية