في نظرية الأعداد، نقول عن دالة حسابية أنها دالة جمع لمتغيرين صحيحين موجبين أو أكثر إذا تحقق ما يلي:[1]
لكل عددين و أوليين فيما بينهما، لدينا: .
جمعية بالكامل
يقال عن دالة جمعية[2] أنها جمعية بالكامل إذا كان لكل الأعداد الصحيحة الموجبة و . إذا كانت دالة جمعية بالكامل، فإن .
كل دالة جمع بالكامل هي دالة جمع، لكن العكس غير صحيح.
أمثلة
أمثلة لدوال جمع بالكامل حسابية:
- دالة أوميغا الأولية ، المعروفة باسم "دالة أوميغا الكبيرة"، والتي تقوم بحساب العدد الإجمالي للعوامل الأولية للعدد [3]، على سبيل المثال:
لأن العدد 1 ليس له عوامل أولية.
Ω(54 032 858 972 279) = Ω(11 ⋅ 1993 ⋅ 1993 ⋅ 1236661) = 4
Ω(54 032 858 972 302) = Ω(2 ⋅ 7⋅ 7 ⋅ 149 ⋅ 2081 ⋅ 1778171)= 6
Ω(20 802 650 704 327 415) = Ω(5 ⋅ 7 ⋅ 11 ⋅ 11⋅ 1993⋅ 1993 ⋅ 1236661) = 7.
أمثلة لدوال حسابية جمعية، ولكنها ليست جمعية بالكامل:
- دالة أوميغا الأولية ، المعروفة باسم "دالة أوميغا الصغيرة"، والتي تقوم بحساب عدد العوامل الأولية المميزة للعدد .[4] مثلاً:
دالة ضربية
نقول عن دالة حسابية ، أنها دالة ضربية إذا كان ، لكل عددين و أوليين فيما بينهما.
لاحظ أنه إذا كانت دالة جمعية، فيمكننا تكوين دالة ضربية بسهولة، مثلاً: .
انظر أيضًا
مراجع