Teorema akar rasional

Nilai Nilai

Teorema akar rasional atau uji akar rasional[1] atau teorema rasional nol adalah teorema yang pertama kali ditemukan oleh René Descartes pada abad ke-17.[2][1] Teorema ini menjelaskan persamaan polinomial dengan koefisien adalah bilangan bulat dan solusi akarnya berupa bilangan rasional. Teorema mengatakan bahwa untuk persamaan

,

dimana . Jika persamaan memiliki suatu akar rasional, maka bentuk akar tersebut adalah

,

asalkan penyebut dan pembilang pada suatu solusi (adalah bilangan rasional) harus membagi habis dan .

Misalnya, diberikan persamaan . Pada kasus ini, memiliki faktor dan memiliki faktor . Maka, akar pada penyelesaian tersebut adalah . Dengan memasukkan semua kemungkinan nilai agar persamaan di atas sama dengan nol, maka kita memperoleh .

Bukti

Misal adalah akar rasional pada persamaan polinomial . Kita cukup membuktikan teorema ini bahwa dan , dimana . Substitusi nilai sehingga kita memperoleh

.

Kita akan membuktikan bahwa membagi habis . Mula-mula, kita pindah-ruaskan .

.

Bagi kedua ruas dengan dan faktor-keluarkan untuk ruas kiri. Kita memperoleh

.

Disini, kita memperoleh bahwa membagi habis . Sekarang, kita membuktikan membagi habis . Dengan cara yang serupa, kita pindah-ruaskan dan kalikan kedua ruas dengan .

.

Disini, kita memperoleh bahwa membagi habis . [3]

Rujukan

  1. ^ a b "Teorema akar rasional | matematika". Teorema akar rasional | matematika. 2020-06-27. Diarsipkan dari versi asli tanggal 2021-12-20. 
  2. ^ "Sutori". www.sutori.com (dalam bahasa Inggris). Diakses tanggal 2021-12-23. 
  3. ^ "Teorema Akar Rasional". ICHI.PRO. Diakses tanggal 2021-12-20. 

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia