Berikut daftar integral dari fungsi logaritmik. Untuk daftar integral lainnya, lihat tabel integral.
Integral hanya melibatkan fungsi logaritmik
(dengan asumsi
, dan konstanta integrasi tidak diperlihatkankan)
![{\displaystyle \int \ln cx\;dx=x\ln cx-x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ea98e0c7eecf01738da468995c70fbeccaffa00)
![{\displaystyle \int \ln(ax+b)\;dx=x\ln(ax+b)-x+{\frac {b}{a}}\ln(ax+b)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c75dd09aa8217f55798f3a3c3e3de15bce433559)
![{\displaystyle \int (\ln x)^{2}\;dx=x(\ln x)^{2}-2x\ln x+2x}](https://wikimedia.org/api/rest_v1/media/math/render/svg/972ad1bc9ef59adfee7013e457529fed94329dad)
![{\displaystyle \int (\ln cx)^{n}\;dx=x(\ln cx)^{n}-n\int (\ln cx)^{n-1}dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc2e71f415a7da575472261d7c93bf65f43335ee)
![{\displaystyle \int {\frac {dx}{\ln x}}=\ln |\ln x|+\ln x+\sum _{i=2}^{\infty }{\frac {(\ln x)^{i}}{i\cdot i!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c15df4866128a1f83aba508a61dd6a560edcbc)
untuk ![{\displaystyle n\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/096f0036b76638006d76cde5ce49aa80d2a9abf6)
untuk ![{\displaystyle m\neq -1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/753088877586d9409e5e88deabce520a110152f2)
untuk ![{\displaystyle m\neq -1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/753088877586d9409e5e88deabce520a110152f2)
untuk ![{\displaystyle n\neq -1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c3fcb723955281ae10a50467befb8e2957077c4)
untuk ![{\displaystyle n\neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5920e98ff3dd1cb41e01f76243300450c958d5e5)
untuk ![{\displaystyle m\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cef37acc560f0cab03941b126dffccdc2412d3eb)
untuk ![{\displaystyle m\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cef37acc560f0cab03941b126dffccdc2412d3eb)
untuk ![{\displaystyle n\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/096f0036b76638006d76cde5ce49aa80d2a9abf6)
![{\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fce91dfa19693fbe5883d150963bed432e06d047)
![{\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{i=1}^{\infty }(-1)^{i}{\frac {(n-1)^{i}(\ln x)^{i}}{i\cdot i!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4d708e93e1d5e252d5547b0cc1fcfb3fd100fc5e)
untuk ![{\displaystyle n\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/096f0036b76638006d76cde5ce49aa80d2a9abf6)
![{\displaystyle \int \ln(x^{2}+a^{2})\;dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/314fa64feb62c47fc0d05522665d430c8072aa31)
![{\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\;dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e15cfae127090061f5368d1df7d8c43a3dc9c253)
![{\displaystyle \int \sin(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/69deb3cb5d25318bb2aefc68171e11c8af606bb6)
![{\displaystyle \int \cos(\ln x)\;dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/17c072211a492bf7b0d19ef53fb5309cfd4af3c8)
![{\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\;dx=e^{x}(x\ln x-x-\ln x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cb70b8726fbf05c72bb315649128dd0bbb2e69dc)
![{\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\;dx={\frac {\ln x}{e^{x}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d09ca762a3f4f3217eb5bfe88a6ae8d8b0685f12)
![{\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x\ln ^{2}x}}\right)\;dx={\frac {e^{x}}{\ln x}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/81f6f22a0772fbd366d8f742e5727548e8f4fa92)
Integral yang melibatkan fungsi logaritmik dan pangkat
(dengan asumsi
, dan konstanta integrasi tidak diperlihatkankan)
untuk ![{\displaystyle m\neq -1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/753088877586d9409e5e88deabce520a110152f2)
untuk untuk ![{\displaystyle m\neq -1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/753088877586d9409e5e88deabce520a110152f2)
untuk ![{\displaystyle n\neq -1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c3fcb723955281ae10a50467befb8e2957077c4)
untuk ![{\displaystyle m\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cef37acc560f0cab03941b126dffccdc2412d3eb)
untuk ![{\displaystyle m\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cef37acc560f0cab03941b126dffccdc2412d3eb)
untuk ![{\displaystyle n\neq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/096f0036b76638006d76cde5ce49aa80d2a9abf6)
![{\displaystyle \int {\frac {dx}{x\ln x}}=\ln \left|\ln x\right|}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fce91dfa19693fbe5883d150963bed432e06d047)
, dst.
![{\displaystyle \int {\frac {dx}{x\ln \ln x}}=\operatorname {li} (\ln x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/180e391e734340059024d58f0396fd1c69fca77d)
![{\displaystyle \int {\frac {dx}{x^{n}\ln x}}=\ln \left|\ln x\right|+\sum _{k=1}^{\infty }(-1)^{k}{\frac {(n-1)^{k}(\ln x)^{k}}{k\cdot k!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/500ec1ec23b97b79baf39b8febbb589f11e37b82)
untuk ![{\displaystyle n\neq -1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5c3fcb723955281ae10a50467befb8e2957077c4)
![{\displaystyle \int \ln(x^{2}+a^{2})\,dx=x\ln(x^{2}+a^{2})-2x+2a\tan ^{-1}{\frac {x}{a}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bb444c640d10b7d12aec5cabd50c55c0a957b820)
![{\displaystyle \int {\frac {x}{x^{2}+a^{2}}}\ln(x^{2}+a^{2})\,dx={\frac {1}{4}}\ln ^{2}(x^{2}+a^{2})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8473d4e4b11e413ddb0d6965f0d0adfe7a58015e)
Integral yang melibatkan fungsi logaritmik dan trigonometri
(dengan asumsi
, dan konstanta integrasi tidak diperlihatkankan)
![{\displaystyle \int \sin(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)-\cos(\ln x))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/33c6c667b8cfe2a07263f42d1392cc2dfdd65cc5)
![{\displaystyle \int \cos(\ln x)\,dx={\frac {x}{2}}(\sin(\ln x)+\cos(\ln x))}](https://wikimedia.org/api/rest_v1/media/math/render/svg/798da7bc36fe2c1edd580c90342c1cde8086df4d)
Integral yang melibatkan fungsi logaritmik dan eksponensial
(dengan asumsi
, dan konstanta integrasi tidak diperlihatkankan)
![{\displaystyle \int e^{x}\left(x\ln x-x-{\frac {1}{x}}\right)\,dx=e^{x}(x\ln x-x-\ln x)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8632f3aea3bdd5b6c25fa45547d2d3359960dfbc)
![{\displaystyle \int {\frac {1}{e^{x}}}\left({\frac {1}{x}}-\ln x\right)\,dx={\frac {\ln x}{e^{x}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/617a944320af8e067a09c96720fa8ef436f4a69f)
![{\displaystyle \int e^{x}\left({\frac {1}{\ln x}}-{\frac {1}{x(\ln x)^{2}}}\right)\,dx={\frac {e^{x}}{\ln x}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/021b378a21d01e5131cc4fa11466d9ada8990f58)
Pustaka