Berikut adalah daftar deret matematika yang berisi tentang rumus untuk penjumlahan terhingga dan tak terhingga. Ini dapat digunakan bersama-sama dengan alat-alat lain untuk menghitung penjumlahan.
Penjumlahan pangkat
Lihat rumus Faulhaber
![{\displaystyle \sum _{k=0}^{m}k^{n-1}={\frac {B_{n}(m+1)-B_{n}}{n}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e82797674c101a71a773fa28db688ccaba2e827)
Beberapa nilai pertamanya adalahː
![{\displaystyle \sum _{k=1}^{m}k={\frac {m(m+1)}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/615f66562931b8bfd0238dc8ccc87b7a6e83d9e8)
![{\displaystyle \sum _{k=1}^{m}k^{2}={\frac {m(m+1)(2m+1)}{6}}={\frac {m^{3}}{3}}+{\frac {m^{2}}{2}}+{\frac {m}{6}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/590a25a336ef2d10df6962aee36d70dc8c623a5f)
![{\displaystyle \sum _{k=1}^{m}k^{3}=\left[{\frac {m(m+1)}{2}}\right]^{2}={\frac {m^{4}}{4}}+{\frac {m^{3}}{2}}+{\frac {m^{2}}{4}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/83655857c974dd27c9b29de8cda04d7c65d334e3)
Lihat konstanta zeta.
![{\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/39c16e56068bfb1b7c7a16876faecbd23cae1fb9)
Beberapa nilai pertamanya adalahː
(Masalah Basel)
![{\displaystyle \zeta (4)=\sum _{k=1}^{\infty }{\frac {1}{k^{4}}}={\frac {\pi ^{4}}{90}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57d340ce3e07c8d682543de1ee543ddb28dbf071)
![{\displaystyle \zeta (6)=\sum _{k=1}^{\infty }{\frac {1}{k^{6}}}={\frac {\pi ^{6}}{945}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c150edab196b63b262f0bcbb971ee895456f8e4)
Deret pangkat
Polilogaritma orde rendah
Penjumlahan terhingga
, (deret geometrik)
![{\displaystyle \sum _{k=1}^{n}kz^{k}=z{\frac {1-(n+1)z^{n}+nz^{n+1}}{(1-z)^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba5195ab25644b0202fb60e7c30b94d044ea38d)
![{\displaystyle \sum _{k=1}^{n}k^{2}z^{k}=z{\frac {1+z-(n+1)^{2}z^{n}+(2n^{2}+2n-1)z^{n+1}-n^{2}z^{n+2}}{(1-z)^{3}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5274ec4b72fcd2bb8ed27ddf604ed21d8dd126f2)
![{\displaystyle \sum _{k=1}^{n}k^{m}z^{k}=\left(z{\frac {d}{dz}}\right)^{m}{\frac {1-z^{n+1}}{1-z}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c7a59ad2bafdc84f1a2ed59d06acdf45a9cb4789)
Penjumlahan tak terhingga, sah untuk (lihat polilogaritma)
![{\displaystyle \operatorname {Li} _{n}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{n}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/269bc4ebc751699b90632451c1506b0d12aef7a9)
Berikut ini adalah sebuah sifat yang berguna untuk menghitung polilogaritma urutan bilangan bulat rendah secara rekursif dalam bentuk tertutup:
![{\displaystyle {\frac {d}{dz}}\operatorname {Li} _{n}(z)={\frac {\operatorname {Li} _{n-1}(z)}{z}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9fc806c7174eab906a2477189cebb285c41cb0ed)
![{\displaystyle \operatorname {Li} _{1}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k}}=-\ln(1-z)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/78c0907fa4e026586a3dec2121860a12c13a62c5)
![{\displaystyle \operatorname {Li} _{0}(z)=\sum _{k=1}^{\infty }z^{k}={\frac {z}{1-z}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/df5a61f7feaffd247a5450eba4968debd0f9bf6e)
![{\displaystyle \operatorname {Li} _{-1}(z)=\sum _{k=1}^{\infty }kz^{k}={\frac {z}{(1-z)^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2505cfc24d99fe2c95e297738310c1347577f017)
![{\displaystyle \operatorname {Li} _{-2}(z)=\sum _{k=1}^{\infty }k^{2}z^{k}={\frac {z(1+z)}{(1-z)^{3}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d703061c9125105bede161bf3adc41091b2fb830)
![{\displaystyle \operatorname {Li} _{-3}(z)=\sum _{k=1}^{\infty }k^{3}z^{k}={\frac {z(1+4z+z^{2})}{(1-z)^{4}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1c15985776b2b6a3638ec04c0bf292b81cd6b72a)
![{\displaystyle \operatorname {Li} _{-4}(z)=\sum _{k=1}^{\infty }k^{4}z^{k}={\frac {z(1+z)(1+10z+z^{2})}{(1-z)^{5}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f08ae7cc5ef199773da7054d9ba3b27aec21012d)
Fungsi eksponensial
![{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{k}}{k!}}=e^{z}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1d3c8535bc3feb0e123e11fe343171dd9d4776da)
(bandingkan rata-rata distribusi Poisson)
(bandingkan momen kedua distribusi Poisson)
![{\displaystyle \sum _{k=0}^{\infty }k^{3}{\frac {z^{k}}{k!}}=(z+3z^{2}+z^{3})e^{z}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/62129fb023e2b6de038703c670c0394abdb87315)
![{\displaystyle \sum _{k=0}^{\infty }k^{4}{\frac {z^{k}}{k!}}=(z+7z^{2}+6z^{3}+z^{4})e^{z}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/738269671a82829e80dca30df6a8c4aa93c98653)
dengan adalah polinomial Touchard.
Fungsi trigonometrik, trigonometrik invers, hiperbolik, dan hiperbolik invers
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\sin z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0eeb6209d2ef99d44eb022f43b79787eade4c648)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\sinh z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5eed9faf752bff168c51a2901e44421778e377b6)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9386a3bfce6368adbad6c7962f37b18b9b995012)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e495ed1e2d351c9644a9b2b9b62814f0255d911)
![{\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2256f274843b5a8dd7338fcd46d89457f27d39b8)
![{\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b10f67088d6d4a62eee48692deda3065a9ef72f8)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/462f64ebe4b22d9eb36d69972a2c16259d72ea16)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/00bfdc23630f34df2a588dcd3f1d5c7b3c9fc6f5)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d223384181921eadadcc9acb38bbbd886d85c7ee)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/b7564ad5932fa5f7084599d879730a4935370aab)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b593907398cd4d3d157e0d4893ffe184fb1c9c67)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01ea5a9b6c4c1072ff899840964d463dc890e1f6)
(versinus)
[1] (haversinus)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\arcsin z,|z|\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc3700c4addbf8311c6ff90b93ac759a750d6d8)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsinh} {z},|z|\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e915cadf00a2f6f95ccc6ae99dbf5c5b574a820b)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bde385b223a3706eb46a282d932a6dc758bbd8fa)
![{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/33cab9855e7ab0d8b6e59cdfe1e8e99cef53d093)
![{\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ea418d43688db9537a8b965838306a48a90840a7)
Penyebut faktorial yang dimodifikasi
[2]
[2]
![{\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7690094e2c29c30c517059014511d42f93f0912a)
Koefisien binomial
(lihat teorema binomial)
[3]
, menghasilkan fungsi bilangan Catalan[3]
, menghasilkan fungsi koefisien binomial pusat[3]
[3]
Bilangan harmonik
(Lihat bilangan harmonik yang didefinisikan )
![{\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/890b6859948e31ec717858a6a6b1582db3673345)
![{\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a1c2c3f140738f0c5c61f88f041f311fbda3a340)
[2]
[2]
Koefisien binomial
![{\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b30fdd28895f157a1d1f254f931879606064ce1c)
dengan ![{\displaystyle n\geq 1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ce9ce38d06f6bf5a3fe063118c09c2b6202bfe)
![{\displaystyle \sum _{k=0}^{n}{k \choose m}={n+1 \choose m+1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fad96c9dbb6c1228a1f7264d6feea813478e34ea)
(lihat multihimpunan)
(lihat identitas Vandermonde)
Fungsi trigonometrik
Penjumlahan fungsi sinus dan kosinus muncul dalam deret Fourier.
![{\displaystyle \sum _{k=1}^{\infty }{\frac {\sin(k\theta )}{k}}={\frac {\pi -\theta }{2}},0<\theta <2\pi }](https://wikimedia.org/api/rest_v1/media/math/render/svg/e191794b1821b1f4608a4d21721396e2a705050b)
![{\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(k\theta )}{k}}=-{\frac {1}{2}}\ln(2-2\cos \theta ),\theta \in \mathbb {R} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/b7351fa56f21f8f5e5934934d36e7d98abb9176c)
,
[4]
![{\displaystyle \sum _{k=0}^{n}\sin(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\sin(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6c9a71d157f3e6aecf7c679c9d826cf2ed78772)
![{\displaystyle \sum _{k=0}^{n}\cos(\theta +k\alpha )={\frac {\sin {\frac {(n+1)\alpha }{2}}\cos(\theta +{\frac {n\alpha }{2}})}{\sin {\frac {\alpha }{2}}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ece3ee92af0be40bcb51db92ab4286a96a49064d)
![{\displaystyle \sum _{k=1}^{n-1}\sin {\frac {\pi k}{n}}=\cot {\frac {\pi }{2n}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd1e592cdc3214ad2a61e0a4d6c8c171b9bbc237)
![{\displaystyle \sum _{k=1}^{n-1}\sin {\frac {2\pi k}{n}}=0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/538dd88d3f15d24a398e3f106d0a6092725fbeca)
[5]
![{\displaystyle \sum _{k=1}^{n-1}\csc ^{2}{\frac {\pi k}{n}}={\frac {n^{2}-1}{3}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/036c3d6e188cf05baf35356bf314e236fb5a45ed)
![{\displaystyle \sum _{k=1}^{n-1}\csc ^{4}{\frac {\pi k}{n}}={\frac {n^{4}+10n^{2}-11}{45}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e969e8c1e28c457892ad6902866438f84193c32)
Fungsi rasional
[6]
![{\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{2}+a^{2}}}={\frac {1+a\pi \coth(a\pi )}{2a^{2}}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1fc8f8afa2921f121e9d5b13b9c03a3b9f7dac)
![{\displaystyle \displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{4}+4a^{4}}}={\dfrac {1}{8a^{4}}}+{\dfrac {\pi (\sinh(2\pi a)+\sin(2\pi a))}{8a^{3}(\cosh(2\pi a)-\cos(2\pi a))}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/34ea360b8b510486913cfdebaa4649472238e43b)
- Suatu deret tak terhingga dari setiap fungsi rasional
dapat direduksi menjadi suatu deret terhingga dari fungsi poligamma, dengan menggunakan dekomposisi pecahan parsial.[7] Fakta ini juga berlaku pada deret terhingga dari fungsi rasional, yang memungkinkan hasilnya dihitung dalam waktu konstanta bahkan jika deret tersebut memiliki banyak suku.
Fungsi eksponensial
(lihat relasi Landsberg–Schaar)
![{\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }e^{-\pi n^{2}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4aee717a740629f569ad7c408608acb53f1ec4bd)
Lihat pula
Catatan
- ^ Weisstein, Eric W. "Haversine". MathWorld. Wolfram Research, Inc. Diarsipkan dari versi asli tanggal 2005-03-10. Diakses tanggal 2015-11-06.
- ^ a b c d Wilf, Herbert R. (1994). generatingfunctionology (PDF). Academic Press, Inc.
- ^ a b c d "Theoretical computer science cheat sheet" (PDF).
- ^ "Bernoulli polynomials: Series representations (subsection 06/02)". Wolfram Research. Diakses tanggal 2 June 2011.
- ^ Hofbauer, Josef. "A simple proof of
and related identities" (PDF). Diakses tanggal 2 June 2011.
- ^
Sondow, Jonathan; Weisstein, Eric W. "Riemann Zeta Function (eq. 52)". MathWorld—A Wolfram Web Resource.
- ^ Abramowitz, Milton; Stegun, Irene (1964). "6.4 Polygamma functions". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. hlm. 260. ISBN 0-486-61272-4.
Referensi
- Banyak buku-buku dengan sebuah daftar integral juga memiliki sebuah daftar deret.
|