Jangkauan interkuartilDalam statistika deskriptif, jangkauan interkuartil (IQR), adalah selisih antara persentil ke-75 (kuartil atas) dan persentil ke-25 (kuartil bawah).[1][2] Dengan kata lain, IQR adalah kuartil ketiga dikurangi kuartil pertama. Kuartil dapat diketahui dengan jelas melalui diagram kotak garis. IQR adalah ukuran variabilitas yang didasarkan pada pembagian kumpulan data menjadi kuartil. Kuartil membagi kumpulan data terurut menjadi empat bagian yang sama besar. Nilai yang memisahkan bagian-bagian ini disebut kuartil pertama, kedua (median), dan ketiga yang masing-masing dilambangkan dengan Q1, Q2, dan Q3.[3] SejarahIstilah kuartil bawah dan kuartil atas pertama kali diperkenalkan oleh Sir Donald MacAlister pada tahun 1879 pada publikasi berjudul The Law of the Geometric Mean. Sementara itu, istilah jangkauan interdesil dan interkuartil pertama kali dicetuskan oleh Francis Galton pada tahun 1882 pada publikasi berjudul Report of the Anthropometric Committee, meskipun ide tentang jangkauan interkuartil sebenarnya pernah dicetuskan oleh Carl Friedrich Gauss dan Adolphe Quételet. PenggunaanIQR digunakan untuk membuat diagram kotak garis, sebuah representasi grafis sederhana yang menunjukkan distribusi probabilitas. Untuk sebuah distribusi simetris (median sama dengan rata-rata kuartil pertama dan ketiga), setengah IQR sama dengan deviasi absolut median (MAD). IQR juga dapat digunakan untuk mengidentifikasi pencilan (lihat di bawah).[4][5] Selain itu, terdapat pula jangkauan semi-interkuartil yang dapat ditentukan melalui persamaan: .[6] AlgoritmaIQR dari suatu kumpulan data merupakan selisih antara kuartil atas (Q3) dan bawah (Q1). Setiap kuartil adalah median[7] dari sebagian data, seperti yang ditunjukkan oleh contoh berikut. Misal, terdapat kumpulan data berjumlah genap (2n) atau ganjil (2n + 1), maka
Kuartil kedua Q 2 sama dengan median kumpulan data yang sesungguhnya.[7] ContohKumpulan data dalam sebuah tabelTabel berikut memiliki 13 baris yang tiap barisnya berisi sebuah data.
Jangkauan interkuartil data di atas adalah: . Kumpulan data dalam diagram kotak polos+−−−−−+−+ * |−−−−−−−−−−−| | |−−−−−−−−−−−| +−−−−−+−+ +−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+−−−+ garis bilangan 0 1 2 3 4 5 6 7 8 9 10 11 12 Kumpulan data pada diagram kotak ini memiliki:
Hal ini menunjukkan bahwa satu garis 1,5*IQR dengan garis 1,5*IQR lainnya bisa jadi memiliki panjang yang tidak sama. DistribusiJangkauan interkuartil dari distribusi kontinu dapat dihitung dengan mengintegrasikan fungsi kepadatan probabilitas. Kuartil bawah (Q1) adalah bilangan sedemikian rupa sehingga integral PDF dari -∞ ke Q1 sama dengan 0,25, sedangkan kuartil atas (Q3) adalah bilangan sedemikian rupa sehingga integral dari -∞ ke Q3 sama dengan 0,75. Pada distribusi fungsi kumulatif (CDF), kuartil dapat didefinisikan sebagai: dengan adalah fungsi kuantil.[8] Jangkauan interkuartil dan median dari beberapa distribusi umum ditunjukkan pada tabel di bawah ini
Uji jangkauan interkuartil untuk normalitas distribusiIQR, rata-rata, dan deviasi standar dari populasi P dapat digunakan dalam uji sederhana untuk menentukan apakah P terdistribusi normal atau tidak. Jika P terdistribusi normal, maka skor standar kuartil pertama, z1, adalah −0.67, dan skor standar kuartil ketiga, z3, adalah +0.67. Diberikan rata-rata = X dan standar deviasi = σ untuk P, jika P berdistribusi normal, maka kuartil pertama dapat dinyatakan sebagai dan kuartil ketiga PencilanJangkauan interkuartil sering digunakan untuk mencari pencilan dalam data. Pada contoh berikut, pencilan didefinisikan sebagai data yang ditemukan berada di bawah Q1 - 1.5 IQR atau di atas Q3 + 1.5 IQR. Dalam diagram kotak, nilai tertinggi dan terendah dalam batas ini ditandai oleh ujung dari garis (sering pula ditambahkan bilah tambahan di ujung garis) dan pencilan sebagai titik-titik individual. Referensi
Pranala luar
|