Diferensial (matematika)

Dalam matematika, diferensial mengacu pada beberapa notasi/konsep yang saling berhubungan[1] dan berasal dari awal perkembangan ilmu kalkulus. Secara lebih matematis, istilah ini mengacu pada perubahan/selisih yang infinitesimal dan turunan dari fungsi. Istilah ini dipakai dalam berbagai cabang matematika seperti kalkulus, geometri diferensial, geometri aljabar dan topologi aljabar.

Pendahuluan

Istilah diferensial adalah terjemahan dari kata bahasa Inggris differential. Secara informal, kata differential digunakan dalam kalkulus untuk merujuk suatu perubahan yang infinitesimal ("infinitely small", sangat kecil) pada suatu variabel. Sebagai contoh, jika x adalah suatu variabel, maka besar perubahan/selisih dari nilai x sering dinyatakan dengan (dibaca sebagai delta x). Diferensial dx menyatakan perubahan nilai yang sangat kecil pada variabel x. Konsep dari perubahan yang sangat kecil cukup intuitif dan memiliki peran yang sangat penting dalam matematika. Ada beberapa cara berbeda untuk mendefinisikan konsep ini secara matematis.

Penggunaan turunan memungkinkan perubahan infinitesimal suatu variabel dinyatakan sebagai perubahan-perubahan infinitesimal dari variabel-variabel lain. Jika y adalah fungsi terhadap x, maka diferensial dy dari variabel y terhubung dengan dx lewat persamaandengan menyatakan turunan dari y terhadap x. Rumus tersebut merangkum ide intuitif bahwa turunan dari y terhadap x adalah limit dari rasio saat menjadi infinitesimal. Terdapat beberapa pendekatan untuk mendefinisikan secara matematis konsep diferensial:

  1. Diferensial sebagai pemetaan linear. Cara ini mendasari definisi turunan total dan turunan eksterior dalam ilmu geometri diferensial.[2]
  2. Diferensial sebagai kelas ekuivalensi germ dari fungsi-fungsi.
  3. Diferensial sebagai elemen nilpoten dari gelanggang komutatif. Pendekatan ini populer dalam geometri aljabar.[3]
  4. Diferensial dalam smooth model pada teori himpunan.[4]
  5. Diferensial sebagai infinitesimals dalam sistem bilangan hiper-real, yakni perluasan bilangan real yang mengandung infinitesimal terbalikkan dan bilangan yang tak hingga besarnya. Cara ini adalah pendekatan analisis non-standar yang dikembangkan oleh Abraham Robinson.[5]

Pendekatan-pendekatan tersebut sangat berbeda satu sama lainnya. Tetapi mereka semua memiliki ide bersifat kuantitatif, maksudnya tidak hanya berkata diferensial adalah sesuatu yang sangat kecil, tapi juga seberapa kecil dia.

Notasi dasar

Karena kata diferensial berkembang dalam beberapa cabang kalkulus, diferensial dapat merujuk konsep "perubahan yang sangat kecil" yang berbeda. Dalam kalkulus, diferensial merujuk pada perubahan akibat mencari aproksimasi linear sebuah fungsi. Konsep diferensial ini diperumum sebagai diferensial total pada fungsi multivariabel. Dalam pendekatan kalkulus yang tradisional, diferensial (contohnya dx, dy, dt) dianggap sebagai perubahan yang sangat kecil (infinitesimal). Terdapat beberapa cara untuk mendefinisikan secara matematis konsep ini, namun juga cukup untuk mengganggap infinitesimal sebagai bilangan yang nilai mutlaknya lebih kecil dari sembarang bilangan real positif; sama seperti tak hingga sebagai bilangan yang lebih besar dari sembarang bilangan real.

Diferensial juga merupakan nama lain dari matriks Jacobi dari turunan parsial fungsi dari ke (khususnya ketika matriks ini dianggap sebagai peta linear). Kalkulus stokastik memberikan notasi diferensial stokastik dan kalkulus yang bersesuaian untuk proses stokastik.

Pada integral Riemann-Stieltjes, integrator dinyatakan sebagai diferensial dari suatu fungsi. Secara formal, diferensial yang muncul di dalam integral memiliki sifat yang tepat sama dengan diferensial. Hal ini mengartikan rumus integrasi dengan subtitusi dan integrasi secara parsial pada integral Stieltjes masing-masing berkorespodensi dengan aturan rantai dan aturan perkalian untuk diferensiasi.

Sejarah dan penggunaan

Besaran infinitesimal ("yang sangat kecil") memainkan peranan penting dalam perkembangan kalkulus. Archimedes menggunakan konsep ini, walaupun ia tidak percaya argumentasi menggunakan infinitesimal bersifat tegas (rigor).[6] Isaac Newton merujuk konsep ini sebagai fluxions. Tetapi, Gottfried Leibniz yang pertama mencetuskan istilah differential untuk besaran infinitesimal dan memperkenalkan notasi untuk mereka, yang masih digunakan saat ini.

Dalam notasi Leibniz, jika x adalah besaran yang dapat berubah (variabel), maka dx menyatakan perubahan infinitesimal pada variabel x. Sehingga, jika y adalah fungsi terhadap x, maka turunan dari y terhadap x sering dinyatakan sebagai dy/dx, yang dalam notasi Newton atau Lagrange sebagai atau . Penggunaan diferensial dalam bentuk ini awalnya mengundang banyak kontroversi, sebagai contoh dalam pamflet terkenal The Analyst oleh uskup Berkeley. Walaupun demikian, notasi ini tetap populer karena menggambarkan ide turunan dari y pada suatu titik x sebagai laju sesaat (kemiringan dari garis singgung pada grafik fungsi), yang dapat dihitung dengan mengambil limit dari rasio perubahan nilai y terhadap perubahan nilai x, yakni , ketika perubahan x dibuat sekecil mungkin. Analisis dimensi juga berlaku bagi diferensial, sehingga dx memiliki dimensi yang sama dengan variabel x.

Kalkulus berkembang menjadi cabang matematika tersendiri pada abad ke-17, walaupun beberapa bagian di dalamnya sudah ada sejak jaman kuno. Pendekatan yang digunakan [contohnya] oleh Newton dan Leibniz ditandai oleh definisi yang tak tegas (tidak matematis) pada istilah seperti diferensial dan "sekecil mungkin". Walaupun argumentasi uskup Berkeley dalam karya The Analyst tahun 1734 sebagian besar bersifat teologis, matematikawan modern menyadari validitas argumennya mengenai besaran infinitesimal. Pendekatan kalkulus yang modern tidak memiliki masalah teknis tersebut. Walaupun banyak hal yang tidak tegas, perkembangan kalkulus secara pesat terjadi pada abad ke-17 dan ke-18. Pada abad ke-19, Cauchy dan para matematikawan lain mulai mengembangkan pendekatan epsilon-delta untuk mendefinisikan kekontinuan, limit, dan turunan, memberikan fondasi matematis untuk kalkulus.

Pada abad ke-20, beberapa konsep baru dalam, sebagai contoh kalkulus multivariabel dan geometri diferensial, terasa memuat maksud dari definisi-definisi lawas, khususnya differential. Saat ini diferensial and infinitesimal menggunakan definisi baru yang lebih tegas dan matematis.

Diferensial juga digunakan dalam notasi integral karena suatu integral dapat dianggap sebagai penjumlahan tak hingga banyaknya besaran infinitesimal: Luas daerah di dalam grafik dihasilkan dengan membagi grafik menjadi tak hingga banyaknya persegi panjang yang sangat tipis, dan menjumlahkan semua luas persegi panjang tersebut. Pada ekspresi sepertiSimbol integral (yang merupakan huruf s yang dipanjangkan) menyatakan penjumlahan tak hingga, f(x) menyatakan "tinggi" dari persegi panjang, sedangkan diferensial dx menyatakan lebar persegi panjang yang kecilnya tak hingga.

Pendekatan

Pendekatan naif

Beberapa buku teks siswa dan mahasiswa menggunakan pendekatan dan nomenklatur lawas yang naif ketimbang memberikan aksioma-aksioma yang tegas, definisi, dan akibat-akibat yang sederhana. Pendekatan dalam kalkulus ini menggunakan istilah diferensial untuk merujuk suatu perubahan yang infinitesimal ("infinitely small", sangat kecil) pada suatu variabel. Sebagai contoh, jika x adalah suatu variabel, maka besar perubahan/selisih dari nilai x sering dinyatakan dengan (dibaca sebagai delta x). Diferensial dx menyatakan perubahan nilai yang sangat kecil pada variabel x. Konsep dari perubahan yang sangat kecil cukup intuitif dan memiliki peran yang sangat penting dalam matematika, kecuali ketika siswa menjadi bingung ketika menyadari ketidakkonsistenan. Ada beberapa cara berbeda untuk mendefinisikan konsep ini secara matematis.

Penggunaan turunan memungkinkan perubahan infinitesimal suatu variabel dinyatakan sebagai perubahan-perubahan infinitesimal dari variabel-variabel lain. Jika y adalah fungsi terhadap x, maka diferensial dy dari variabel y terhubung dengan dx lewat persamaandengan menyatakan turunan dari y terhadap x. Rumus tersebut merangkum ide intuitif bahwa turunan dari y terhadap x adalah limit dari rasio saat menuju 0.

Diferensial sebagai peta linear

Ada cara sederhana untuk mendefinisikan secara akurat makna diferensial, pertama menggunakan garis bilangan dengan mengganggapnya sebagai peta linear. Hal ini selanjutnya dapat diperumum ke , , ruang Hilbert, ruang Banach, atau secara umum, ruang vektor topologis. Kasus garis bilangan paling mudah untuk dijelaskan.

Diferensial sebagai peta linear pada R

Misalkan adalah fungsi bernilai real pada . Variabel dalam dapat dianggap sebagai sebuah fungsi ketimbang sebuah bilangan, yakni sebagai fungsi identitas pada garis bilangan, yang memetakan sebuah bilangan real ke dirinya sendiri: . Hal ini mengartikan adalah fungsi komposit terhadap , dengan nilai di titik adalah . Diferensial (yang tentunya bergantung pada perubahan nilai ) selanjutnya adalah sebuah fungsi di titik (umumnya dinyatakan sebagai ) yang memetakan ke secara linear. Selanjutnya pemetaan linear dari ke dinyatakan oleh matriks berukuran , yang sama saja dengan sebuah bilangan, namun perubahan perspektif memungkinkan untuk mengganggap sebagai infinitesimal dan membandingkannya dengan infinitesimal standar , yang dalam kasus ini adalah fungsi identitas dari ke (matriks berukuran dengan elemen bernilai ). Fungsi identitas memiliki sifat yakni jika bernilai sangat kecil, maka juga akan bernilai sangat kecil, memungkinkannya dianggap sebagai suatu infinitesimal. Diferensial memiliki sifat yang sama, karena ia merupakan kelipatan dari , dan besar kelipatan ini, , adalah definisi dari turunan. Alhasil didapatkan , dan akibatnya .

Pendekatan di atas pada akhirnya menggunakan ide bahwa adalah perbandingan dari diferensial terhadap diferensial . Pendekatan ini juga dapat diperumum karena berisi ide bahwa turunan dari di titik adalah aproksimasi linear terbaik dari fungsi di titik .

Diferensial sebagai peta linear pada Rn

Jika adalah fungsi multivariabel dari ke , maka didefinisikan sebagai terdiferensialkan[7] di titik jika terdapat pemetaan linear dari ke sedemikian sehingga untuk sembarang , ada suatu lingkungan dari sedemikian sehigga untuk sembarang ,Pendekatan yang sama dengan kasus satu dimensi dapat digunakan pada masalah ini, dengan menganggap ekspresi sebagai fungsi komposit dengan fungsi koordinat standar on (yakni menyatakan komponen ke- dari titik ). Selanjutnya diferensial pada titik membentuk sebuah basis untuk ruang vektor dari peta-peta linear ke . Akibatnya, jika terdiferensialkan pada titik , maka dapat ditulis sebagai kombinasi linear elemen-elemen basis tersebut:Koefisien-koefisien adalah (dari definisi) turunan parsial dari di terhadap . Dengan kata lain, jika terdiferensialkan di keseluruhan , maka diferensial dapat ditulis dengan lebih ringkas sebagai:Pada kasus satu dimensi persamaan di atas menjadisama seperti hasil pada kasus satu dimensi. Ide ini dapat diperumum untuk fungsi dari ke . Lebih lanjut, definisi ini lebih menguntungkan ketimbang definisi-definisi turunan yang lain karena bersifat invarian terhadap perubahan koordinat. Hal ini mengartikan ide yang sama juga dapat digunakan untuk mendefinisikan diferensial dari pemetaan mulus dari lipatan mulus.

Walaupun demikian, perlu disadari bahwa keberadaan semua turunan parsial dari di adalah syarat perlu untuk keberadaan suatu diferensial di titik . Namun itu bukan syarat cukup, untuk contoh penangkal, lihat turunan Gateaux.

Referensi

  1. ^ "Differential". Wolfram MathWorld. Diakses tanggal 9 Maret 2022. Terjemahan dari bahasa Inggris: "Kata differensial memiliki beberapa arti yang saling berhubungan dalam matematika. Dalam konteks yang umum, kata itu berarti "sesuatu tentang turunan (derivatives)". Jadi, sebagai contoh, bagian kalkulus yang berurusan dengan menghitung turunan (diferensiasi), disebut sebagai kalkulus diferensial.
    Kata "differential" juga memiliki arti yang lebih teknis dalam teori diferensial k-forms sebagai sesuatu yang lebih dikenal sebagai one-form."
     
  2. ^ Darling 1994.
  3. ^ Eisenbud & Harris 1998.
  4. ^ See Kock 2006 and Moerdijk & Reyes 1991.
  5. ^ See Robinson 1996 and Keisler 1986.
  6. ^ Boyer 1991.
  7. ^ See, for instance, Apostol 1967.

Daftar pustaka

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia