Daftar integral (antiderivatif) dari fungsi hiperbolik. Untuk daftar lengkap fungsi integral, lihat Tabel integral.
Dalam semua rumus, konstanta a diasumsikan bukan nol, dan C melambangkan konstanta integrasi.
Integral melibatkan hanya fungsi hiperbolik sinus
- juga:
![{\displaystyle \int \sinh ^{n}ax\,dx={\frac {1}{a(n+1)}}\sinh ^{n+1}ax\cosh ax-{\frac {n+2}{n+1}}\int \sinh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc8cd20cfe958b17f3c2e1ff5ee54d5608ddc9f2)
- juga:
![{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\cosh ax-1}{\sinh ax}}\right|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5a8d31337ed2598b6933cb5ea53b9a77c44e139c)
![{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9abc694d34204ecd7ccd4af1576834fe16bf8387)
![{\displaystyle \int {\frac {dx}{\sinh ax}}={\frac {1}{2a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ed2c5e9f0572476dce14c6272a758887d5a5bc7a)
Integral melibatkan hanya fungsi hiperbolik kosinus
- juga:
![{\displaystyle \int \cosh ^{n}ax\,dx=-{\frac {1}{a(n+1)}}\sinh ax\cosh ^{n+1}ax+{\frac {n+2}{n+1}}\int \cosh ^{n+2}ax\,dx\qquad {\mbox{(for }}n<0{\mbox{, }}n\neq -1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b00d7b9291030d9ecbdb65ef3180a667a686a86c)
- juga:
![{\displaystyle \int {\frac {dx}{\cosh ax}}={\frac {1}{a}}\arctan(\sinh ax)+C\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/50ddb5b6da0e0038f4fa6249924121949b4387d3)
Integral lain-lain
Integral fungsi hiperbolik tangen, kotangen, sekan, kosekan
Integral melibatkan fungsi hiperbolik sinus dan kosinus
- juga:
![{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b7572b1393192e541db41e1955c55e899b2398e0)
![{\displaystyle \int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}dx=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4a23be9bfbc718da7eb953938ab893daa8606cd5)
![{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ac64edb7da52a49884dd2c9521709389acd8b92)
![{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46658b84dd546f7e559b1da9860b81095aa2a261)
![{\displaystyle \int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}dx=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b2bc949c723b76c32dfaafb96807c3a41dd75cf)
Integral melibatkan fungsi hiperbolik dan trigonometri