^ 3.03.1Malin, M.C., and Carr, M.H. (1999), Groundwater formation of martian valleys, Nature, 397, 589-592
^ 4.04.14.2Haberle, R.M. (1998), Early Climate Models, J. Geophys. Res., 103(E12),28467-79.
^Baker, V. R., and Partridge, J. (1986), Small martian valleys: Pristine and degraded morphology, J. Geophys. Res., 91, 3561–3572
^Pieri, D. (1976), Distribution of small channels on the martian surface, Icarus, 27,
25– 50
^Brakenridge, G. R., H. E. Newsom, and Baker, V.R. (1985), Ancient hot springs on Mars: Origins and paleoenvironmental significance of small martian valleys, Geology, 13, 859–862
^Clifford, S. M. (1993), A model for the hydrologic and climatic behavior of water on Mars, J. Geophys. Res., 98, 10,973–11,016
^Hynek, B.M., and Phillips, R.J. (2001), Evidence of extensive denudation of the martian highlands, Geology, 29, 407-10
^Jaumann, R. (2005), Martian valley networks and associated fluvial features as seen by the Mars Express High Resolution Camera (HRSC), LPSC XXXVI, Abstract 1815
^ 11.011.1Dohm, J.M., and Scott, D.H. (1993), Relation between ages and elevation of martian channels (abstract), Lunar Planet. Sci., XXIV, 407– 408
^Golombek, M.P., and Bridges, N.T. (2000), Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site, J. Geophys. Res., 105(E1), 1841-1853
^Squyres, S.W., and Kasting, J.F. (1994), Early Mars: How warm and how wet?, Science, 265, 744-8.
^Lamb, M.P, Howard, A.D., Johnson, J., Whipple, K.X., Dietrich, W.E., and Perron, T. (2006), Can springs cut canyons into rock?, J. Geophys. Res., 111, E07002, doi:10.1029/2005JE002663
^Sharp, R.P, and Malin, M.C. (1975), Channels on Mars, Geol. Soc. Am. Bull., 86, 593-609.
^Clifford, S.M. (1993), A model for the hydrologic and climatic behavior of water on Mars, J. Geophys. Res., 98, 10973-1016
^Carr, M.H. (2002), Elevation of water-worn features on Mars: Implications for circulation of groundwater, J. Geophys. Res., 107(E12), 5131, doi:10.1029/2002JE001963.
^Gulick, V.C. (1998), Magmatic intrusions and a hydrothermal origin of fluvial valleys on Mars, J. Geophys. Res., 103, 19365-87.
^Newsome, H.E. (1980), Hydrothermal alteration of impact melt sheets with implications for Mars, Icarus, 44, 207-16.
^Salese, F., G. Di Achille, A. Neesemann, G. G. Ori, and E. Hauber (2016), Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars, J. Geophys. Res. Planets, 121, 194–232, doi:10.1002/2015JE004891
^Pollack, J.B., Kasting, J.F., Richardson, S.M., and Poliakoff, K. (1987), The case for a warm wet climate on early Mars, Icarus, 71, 203-24.
^Carr, M.H. (1999), Retention of an atmosphere on early Mars, J. Geophys. Res., 104, 21897-909.
^Ramirez, R. M., Kopparapu, R., Zugger, M. E., Robinson, T. D., Freedman, R., & Kasting, J. F. (2014). Warming early Mars with CO2 and H2. Nature Geoscience, 7(1), 59-63.
^Wordsworth, R., Kalugina, Y., Lokshtanov, S., Vigasin, A., Ehlmann, B., Head, J., ... & Wang, H. (2017). Transient reducing greenhouse warming on early Mars. Geophysical Research Letters, 44(2), 665-671
^Ramirez, R.M. (2017) A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus, 297, 71-82