Теорема про чотири вершини стверджує, що функція кривини простої замкнутої гладкої плоскої кривої має щонайменше чотири локальних екстремуми (зокрема, щонайменше два локальних максимуми і щонайменше два локальних мінімуми). Назва теореми відображає угоду називати екстремальні точки функції кривини вершинами. Ця теорема має багато узагальнень, включно з версією кривої у просторі, де вершина визначається як точка в якій зникає скрут кривої.
Приклади
Еліпс має в точності чотири вершини — два локальних максимуми кривини в місцях перетину еліпса з великою віссю, і два локальних мінімуми в місцях перетину з малою віссю. На колі всі точки є як локальними максимумами, так і локальними мінімумами кривини, так що на ній нескінченно багато вершин.
В іншому мовному розділі є повніша стаття Four-vertex theorem(англ.). Ви можете допомогти, розширивши поточну статтю за допомогою перекладу з англійської.
Перекладач повинен розуміти, що відповідальність за кінцевий вміст статті у Вікіпедії несе саме автор редагувань. Онлайн-переклад надається лише як корисний інструмент перегляду вмісту зрозумілою мовою. Не використовуйте невичитаний і невідкоригований машинний переклад у статтях української Вікіпедії!
Машинний переклад Google є корисною відправною точкою для перекладу, але перекладачам необхідно виправляти помилки та підтверджувати точність перекладу, а не просто скопіювати машинний переклад до української Вікіпедії.
Не перекладайте текст, який видається недостовірним або неякісним. Якщо можливо, перевірте текст за посиланнями, поданими в іншомовній статті.