Середнє за Чезаро

В математиці середні за Чезаро послідовності — це середні арифметичні перших членів :

Поняття назване на честь італійського математика Ернесто Чезаро[en].

Основний результат теорії чезарових середніх (див. теорема Штольца) стверджує, що якщо існує границя послідовності , то також існує границя послідовності , і вони рівні:

.

Тим самим, операція взяття чезарового середнього має властивість регулярності — зберігає властивість збіжності послідовності та її границю. В той же час, існує багато прикладів, коли вихідна послідовність не має границі, а її чезарові середні збігаються. (Наприклад, послідовність .) Це дозволяє використовувати чезарові середні як один з методів підсумовування розбіжних рядів.

Посилання

  • Кириллов А.А., Гвишиани А.Д. Теоремы и задачи функционального анализа.(рос.)