Рівняння Томаса — ФерміРівняння Томаса — Фермі — рівняння, що наближено описує розподіл електричного поля й густини електронів у важких атомах. Запропоноване в 1927 році незалежно Л. Г. Томасом і Енріко Фермі Припущення локальної густини електронівРівняння виводиться, виходячи з припущення, що багатоелектронну систему важких атомів можна описати за допомогою електронної густини, яка залежить від потенціалу електричного поля в даній точці й задається формулою
де m — маса електрона, е — елементарний заряд, — потенціал, — зведена стала Планка, а величина A визначається таким чином, щоб -eA давало повну енергію. Для нейтрального атома A = 0, для йона
де Z — зарядове число ядра атома, N — кількість електронів у йоні, R — радіус йона. Рівняння Томаса — Фермі виводиться, виходячи з рівняння Пуасона де густина заряду дорівнює : У безрозмірній формі рівняння зводиться до універсального Це рівняння розв'язується з граничними умовами де — радіус атома в безрозмірних одиницях. Характеристики розв'язкуРозв'язок рівняння Томаса — Фермі дає однаковий розподіл електронної густини для всіх важких атомів. Від атома до атома змінюється лише радіус. Електронна густина різко зростає від центру, а потім, досягши максимуму, спадає до краю. НедолікиРівняння Томаса — Фермі неспроможне описати електронні оболонки атомів. Електронна густина спадає на великих віддалях від ядра повільно. Рівняння Томаса — Фермі не може пояснити також природу хімічних зв'язків. Однак, запропонований метод лежить в основі теорії функціоналу електронної густини, який широко й успішно застосовується в сучасній квантовій хімії[1]. Джерела
Примітки
|