Поліноми Лаґерра — ортогональні поліноми , названі на честь французького математика Едмона Лаґерра .
Визначення
Поліномами Лаґерра називаються канонічні розв'язки диференційного рівняння
x
y
″
+
(
1
−
x
)
y
′
+
n
y
=
0
{\displaystyle x\,y''+(1-x)\,y'+n\,y=0\,}
що є лінійним диференційним рівнянням другого порядку і має несингулярний розв'язок лише для невід'ємних цілих n .
Для даних поліномів справедлива також явна формула Родрігеса :
L
n
(
x
)
=
e
x
n
!
d
n
d
x
n
(
e
−
x
x
n
)
.
{\displaystyle L_{n}(x)={\frac {e^{x}}{n!}}{\frac {d^{n}}{dx^{n}}}\left(e^{-x}x^{n}\right).}
Поліноми Лаґерра можна задати рекурсивно. Для цього слід взяти:
L
0
(
x
)
=
1
{\displaystyle L_{0}(x)=1\,}
L
1
(
x
)
=
1
−
x
{\displaystyle L_{1}(x)=1-x\,}
і визначити наступні поліноми за допомогою формули:
L
k
+
1
(
x
)
=
1
k
+
1
(
(
2
k
+
1
−
x
)
L
k
(
x
)
−
k
L
k
−
1
(
x
)
)
.
{\displaystyle L_{k+1}(x)={\frac {1}{k+1}}\left((2k+1-x)L_{k}(x)-kL_{k-1}(x)\right).}
Приклади
Прикладами поліномів Лаґерра найменших степенів є:
n
L
n
(
x
)
{\displaystyle L_{n}(x)\,}
0
1
{\displaystyle 1\,}
1
−
x
+
1
{\displaystyle -x+1\,}
2
1
2
(
x
2
−
4
x
+
2
)
{\displaystyle {\scriptstyle {\frac {1}{2}}}(x^{2}-4x+2)\,}
3
1
6
(
−
x
3
+
9
x
2
−
18
x
+
6
)
{\displaystyle {\scriptstyle {\frac {1}{6}}}(-x^{3}+9x^{2}-18x+6)\,}
4
1
24
(
x
4
−
16
x
3
+
72
x
2
−
96
x
+
24
)
{\displaystyle {\scriptstyle {\frac {1}{24}}}(x^{4}-16x^{3}+72x^{2}-96x+24)\,}
5
1
120
(
−
x
5
+
25
x
4
−
200
x
3
+
600
x
2
−
600
x
+
120
)
{\displaystyle {\scriptstyle {\frac {1}{120}}}(-x^{5}+25x^{4}-200x^{3}+600x^{2}-600x+120)\,}
6
1
720
(
x
6
−
36
x
5
+
450
x
4
−
2400
x
3
+
5400
x
2
−
4320
x
+
720
)
{\displaystyle {\scriptstyle {\frac {1}{720}}}(x^{6}-36x^{5}+450x^{4}-2400x^{3}+5400x^{2}-4320x+720)\,}
Графіки поліномів Лаґерра.
Узагальнені поліноми Лаґерра
Узагальненими поліномами Лаґерра називаються поліноми визначені за допомогою узагальненої формули Родрігеса:
f
(
x
)
=
{
x
α
e
−
x
/
Γ
(
1
+
α
)
if
x
>
0
,
0
if
x
<
0
,
{\displaystyle f(x)=\left\{{\begin{matrix}x^{\alpha }e^{-x}/\Gamma (1+\alpha )&{\mbox{if}}\ x>0,\\0&{\mbox{if}}\ x<0,\end{matrix}}\right.}
Тоді звичайні поліноми Лаґерра є окремим випадком:
E
[
L
n
(
X
)
L
m
(
X
)
]
=
0
whenever
n
≠
m
.
{\displaystyle E\left[L_{n}(X)L_{m}(X)\right]=0\ {\mbox{whenever}}\ n\neq m.}
Узагальнений поліном Леґерра степеня
n
{\displaystyle n}
також можна визначити за допомогою формули
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
(
−
1
)
i
(
n
+
α
n
−
i
)
x
i
i
!
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}(-1)^{i}{n+\alpha \choose n-i}{\frac {x^{i}}{i!}}}
Також виконуються рекурентні співвідношення :
L
n
(
α
+
β
+
1
)
(
x
+
y
)
=
∑
i
=
0
n
L
i
(
α
)
(
x
)
L
n
−
i
(
β
)
(
y
)
,
{\displaystyle L_{n}^{(\alpha +\beta +1)}(x+y)=\sum _{i=0}^{n}L_{i}^{(\alpha )}(x)L_{n-i}^{(\beta )}(y),}
Зокрема
L
n
(
α
+
1
)
(
x
)
=
∑
i
=
0
n
L
i
(
α
)
(
x
)
{\displaystyle L_{n}^{(\alpha +1)}(x)=\sum _{i=0}^{n}L_{i}^{(\alpha )}(x)}
і
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
(
α
−
β
+
n
−
i
−
1
n
−
i
)
L
i
(
β
)
(
x
)
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n-i-1 \choose n-i}L_{i}^{(\beta )}(x)}
, або
L
n
(
α
)
(
x
)
=
∑
i
=
0
n
(
α
−
β
+
n
n
−
i
)
L
i
(
β
−
i
)
(
x
)
;
{\displaystyle L_{n}^{(\alpha )}(x)=\sum _{i=0}^{n}{\alpha -\beta +n \choose n-i}L_{i}^{(\beta -i)}(x);}
Приклади
Прикладами узагальнених поліномів Лаґерра найменших степенів є:
L
0
(
α
)
(
x
)
=
1
{\displaystyle L_{0}^{(\alpha )}(x)=1}
L
1
(
α
)
(
x
)
=
−
x
+
α
+
1
{\displaystyle L_{1}^{(\alpha )}(x)=-x+\alpha +1}
L
2
(
α
)
(
x
)
=
x
2
2
−
(
α
+
2
)
x
+
(
α
+
2
)
(
α
+
1
)
2
{\displaystyle L_{2}^{(\alpha )}(x)={\frac {x^{2}}{2}}-(\alpha +2)x+{\frac {(\alpha +2)(\alpha +1)}{2}}}
L
3
(
α
)
(
x
)
=
−
x
3
6
+
(
α
+
3
)
x
2
2
−
(
α
+
2
)
(
α
+
3
)
x
2
+
(
α
+
1
)
(
α
+
2
)
(
α
+
3
)
6
{\displaystyle L_{3}^{(\alpha )}(x)={\frac {-x^{3}}{6}}+{\frac {(\alpha +3)x^{2}}{2}}-{\frac {(\alpha +2)(\alpha +3)x}{2}}+{\frac {(\alpha +1)(\alpha +2)(\alpha +3)}{6}}}
Ортогональність
Узагальнені поліноми Лаґерра є ортогональними на проміжку [0, ∞) з вагою x α e −x :
∫
0
∞
x
α
e
−
x
L
n
(
α
)
(
x
)
L
m
(
α
)
(
x
)
d
x
=
Γ
(
n
+
α
+
1
)
n
!
δ
n
,
m
,
{\displaystyle \int _{0}^{\infty }x^{\alpha }e^{-x}L_{n}^{(\alpha )}(x)L_{m}^{(\alpha )}(x)dx={\frac {\Gamma (n+\alpha +1)}{n!}}\delta _{n,m},}
Для звичайних поліномів Лаґерра виконується рівність:
⟨
f
,
g
⟩
=
∫
0
∞
f
(
x
)
g
(
x
)
e
−
x
d
x
.
{\displaystyle \langle f,g\rangle =\int _{0}^{\infty }f(x)g(x)e^{-x}\,dx.}
Література
Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 22", Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, ISBN 0-486-61272-4 .
B Spain, M G Smith, Functions of mathematical physics , Van Nostrand Reinhold Company, London, 1970. Chapter 10 deals with Laguerre polynomials.
Eric W. Weisstein, "Laguerre Polynomial [Архівовано 25 лютого 2010 у Wayback Machine .] ", From MathWorld—A Wolfram Web Resource.
George Arfken and Hans Weber (2000). Mathematical Methods for Physicists . Academic Press. ISBN 0-12-059825-6 .
S. S. Bayin (2006), Mathematical Methods in Science and Engineering , Wiley, Chapter 3.