Однозначно розфарбовуваний графОднозна́чно розфарбо́вуваний граф — це k-колірний граф, що допускає тільки одне (правильне) k-розфарбування (з точністю до перестановки кольорів). ПрикладиПовний граф є однозначно розфарбовуваним, оскільки існує лише одне допустиме розфарбування — кожній вершині призначається свій колір. Будь-яке k-дерево однозначно розфарбовується в (k + 1) колір. Однозначно розфарбовуються в 4 кольори планарні графи — це точно графи Аполлонія, тобто планарні 3-дерева[1]. ВластивостіДеякі властивості однозначно k-розфарбовуваного графа G з n вершинами і m ребрами: Пов'язані концепціїМінімальна недосконалістьМінімально недосконалий граф — це граф, e якому будь-який підграф є досконалим. Видалення будь-якої вершини з мінімально недосконалого графа залишає однозначно розфарбовуваний підграф. Однозначне розфарбування реберОднозначно реберно-розфарбовуваний граф — це реберно k-колірний граф, що допускає тільки одне (правильне) реберне k-розфарбування з точністю до перестановки кольорів. Тільки шляхи та цикли допускають однозначне реберне 2-розфарбування. Для будь-якого значення k зірки K1,k є однозначно реберно k-розфарбовуваними графами. Проте Вільсон[4] висловив гіпотезу, а Томасон[5] довів, що за k ≥ 4 це єдині члени цього сімейства. Існують, однак, однозначно реберно 3-розфарбовувані графи, що не потрапляють до цієї класифікації, як, наприклад, граф трикутної піраміди. Якщо кубічний граф однозначно реберно 3-розфарбовуваний, він повинен мати рівно три гамільтонових цикли, утворених ребрами двох (з трьох) кольорів, однак деякі кубічні графи тільки з трьома гамільтоновими циклами однозначного реберного 3-розфарбування не мають[6] . Будь-який простий планарний кубічний граф, що допускає єдине реберне 3-розфарбування, містить трикутник[1], але Тат[7] зауважив, що узагальнений граф Петерсена G(9,2) є непланарним графом без трикутників, однак він однозначно реберно 3-розфарбовуваний. Багато років цей граф був єдиним прикладом таких графів (див. статті Болобаша[8] і Швенка[9]), але тепер відомо нескінченно багато непланарних кубічних графів без трикутників, які мають однозначне реберне 3-розфарбування[6]. Однозначне тотальне розфарбуванняОднозначно тотально розфарбовуваний граф — це тотально k-колірний граф, що допускає тільки одне (правильне) тотальне k-розфарбування (з точністю до перестановки кольорів). Порожні графи[en], шляхи й цикли з довжиною, що ділиться на 3, є однозначно тотально розфарбовуваними графами. Махмудіан і Шокроллахі[10] висунули гіпотезу, что тільки ці графи й утворюють сімейство. Деякі властивості однозначно тотально k-розфарбовуваного графа G з n вершинами: Тут χ″(G) — тотальне хроматичне число; Δ(G) — найбільший степінь, а δ(G) — найменший степінь. ПриміткиЛітература
Посилання
|