Конгруентні матриціКвадратні матриці називаються конгруентними, якщо існує невироджена матриця , що виконується :
Конгруентні матриці виникають під час зміни базису білінійної форми чи квадратичної форми. Дві матриці є конгруентними тоді і тільки тоді, коли вони описують одну і ту ж білінійну форму в різних базисах. Перехід від одного базису до іншого задається матрицею переходу Закон інерції СильвестраЩоб спростити задання білінійної форми, шукають базис в якому її матриця є діагональною. Довільна дійсна симетрична матриця є конгруентною до деякої діагональної матриці, при чому, можна обмежитись тільки ортогональними перетвореннями І діагональна матриця буде складатись з власних значень матриці (див. Подібні матриці). Якщо ж не обмежуватись тільки ортогональними перетвореннями, то можна добитись, що на діагоналі будуть тільки числа -1, 0, +1. Закон інерції Сильвестра стверджує, що дві дійсні симетричні матриці конгруентні тоді і тільки тоді, коли в них однакова кількість додатних, від'ємних і нульових власних значень. Дивись такожДжерела
|