Зарядове спряженняЗарядове спря́ження — заміна знаків електричних зарядів усіх частинок фізичної системи на протилежні. Інваріантність рівнянь руху відносно зарядового спряження називається C-симетрією або C-інваріантністю. Також використовується поняття «зарядова парність», за аналогією з операцією просторової парності. Зарядова парність нейтральних частинокПотенціал електричного поля при заміні знаку зарядів змінює свій знак на протилежний. Тому нейтральні частинки фотони, кванти електромагнітного поля, називають частинками від'ємної зарядової спряженості. Нейтральні частинки, поля яких не змінюють знаку при зарядовому спряженні, називаються частинками додатної зарядової спряженості. ФормалізмРозглянемо операцію , що перетворює частинку на її античастинку, Нормалізація вимагає унітарність : Застосовуючи оператор двічі до частинки, можна отримати та . Як наслідок, тобто оператор зарядового спряження є ермітовим, відповідно, спостережуваним в експерименті. Власні значенняДля власних значень оператора зарядового спряження,
Так само як і з операцією парності, застосування двічі повертає частинку в її початковий стан, таким чином лише власні значення є дозволеними. Власні станиОскільки та мають ідентичні квантові числа, лише істинно нейтральні частинки — ті, у яких усі квантові числа та магнітний момент дорівнюють нулю — є власними станами оператора зарядової парності. Такими частинками є фотон, а також зв'язані стани частинок-античастинок, такі як нейтральний піон, ета-мезон, кварконій або позитроній. Системи кількох частинокДля системи з кількох незалежних вільних частинок, зарядова парність дорівнює добутку зарядових парностей кожної з частинок. Якщо ж частинки перебувають у взаємодії, виникають додаткові компоненти. У парі мезонів, що взаємодіють, є додатковий внесок від орбітального кутового моменту. Наприклад, для системи з двох піонів, π+ π− з орбітальним кутовим моментом L, перестановка π+ та π− віддзеркалює їх координати, що еквівалентно операції парності. При цьому, кутова частина просторової хвильової функції системи додає коефіцієнт (−1)L, де L є квантовим числом орбітального кутового моменту.
У системі ферміона-антиферміона (як то кварк-антикварк), необхідно врахувати два додаткових множники: один виникає через те, що оператор зарядової парності змінює їх проєкції спіну на протилежні, а другий через перестановку ферміона та антиферміона. Зв'язані стани позначаються з допомогою спектроскопічної нотації 2S+1LJ (терми), де S — квантове число спіну, L — азимутальне квантове число (число орбітального кутового моменту) та J — квантове число повного моменту. Наприклад, позитроній є зв'язаним станом електрона-позитрона. Парапозитроній та ортопозитроній відповідають станам 1S0 та 3S1.
Експериментальні підтвердження збереження зарядової парності
Зарядова спряженість взаємодійЗакони електромагнітної, сильної і гравітаційної взаємодій інваріантні відносно операції зарядового спряження. Слабка взаємодія неінваріантна відносно операції зарядового спряження, так само як і відносно одночасної операції парності та зарядового спряження (див. Порушення CP-інваріантності). Усі чотири типи взаємодій інваріантні відносно одночасної зміни знаків заряду, напрямку просторових осей і напрямку плину часу (CPT-інваріантність). Примітки
Посилання
|