Гамма-аміномасляна кислота
γ-амінома́сляна кислота́ (ГАМК) — амінокислота, що є найпоширенішим гальмівним нейромедіатором в центральній нервовій системі (ЦНС). Окрім ЦНС, ГАМК також присутня і в інших органах та тканинах. Наприклад, у β-клітинах підшлункової залози вона бере участь у передачі сигналів між клітинами острівцевого апарату. Також ГАМК знайдена в клітинах яєчників, яєчок та шлунково-кишкового тракту, де її роль досі невідома. Синтез ГАМК відбувається в нейронах і каталізується ферментом декарбоксилазою глутамінової кислоти (глутамінокисла декарбоксилаза), який перетворює глутамат на ГАМК. Потім ГАМК упаковується в синаптичні везикули і вивільняється в синаптичну щілину, коли нейрон активується. ІсторіяГАМК в ЦНС було відкрито в 1950 році Юджином Робертсом, але до 60-х років ХХ сторіччя роль цієї речовини лишалась невідомою. Спочатку вважалося, що це метаболічний побічний продукт глутамату, іншого нейромедіатора в мозку. Однак незабаром було зрозуміло, що ГАМК є самостійним нейромедіатором. Метаболізм ГАМКГАМК синтезується з глутамату за допомогою ферменту L-глутамат-декарбоксилази (ГАД). Початково наявність ГАД вважалась ознакою гальмівного нейрону, але останнім часом цей фермент було знайдено і в збуджувальних нервових клітинах. Метаболізується ГАМК за допомогою ферменту ГАМК-трансамінази (ГАМК-T) в ГАМК-шунті (див рисунок). На відміну від ГАД, ГАМК-Т, що локалізована на мітохондріальній матриці, синтезується не тільки в ЦНС, а й в інших органах. ГАМК-Т перетворює ГАМК в сукцинатний напівальдегід, використовуючи α-кетоглутарат як акцептор аміногрупи при формуванні глутамату (див. рисунок). Для роботи ГАМК-Т необхідна наявність пірідоксаль-фосфату (ПЛФ), що грає роль коферменту. Утворений на попередньо описаній стадії метаболізму ГАМК сукцинатний напівальдегід потім оксидизується до сукцинату, який, в свою чергу, залучається до циклу трикарбонових кислот. ГАД65 та ГАД67Відомі дві форми ГАД — ГАД65 та ГАД67, відповідно до їхньої молекулярної маси (тобто приблизно 65 та 67 кілоДальтон — kDa). Ці дві форми кодуються двома різними і незалежними один від одного генами. ГАД67, судячи зі всього, є цитоплазматичним ферментом, що зустрічається в усіх ГАМК-ергічних нейронах як в тілі клітини, так і у відростках. Натомість ГАД65 переважно знаходиться в нервових терміналах і є ферментом, вбудованим в мембрани везикул, що містять нейротрансмітер. ПЛФ є ко-фактором для ГАД, і асоціація або дисоціація цього ко-фактору відіграє значну роль в короткотерміновій регуляції дії ГАД. Загалом, регуляція роботи ГАД є складною і досі повністю не досліджена; окрім того, неясним є фізіологічний сенс існування двох ферментів (ГАД65 та ГАД67), що експресуються незалежними генами, регуляція та локалізація котрих теж є різними, але котрі виконують одні і ті ж функції. Однією з пояснюючих гіпотез є те, що ГАМК в нейроні розподілена по двом об'ємам — цитоплазмі та внутрішньому об'єму медіаторних везикул — що мають різне призначення та практично не сполучаються між собою; але слабким місцем цієї гіпотези є те, що, на відміну від везикулярної ГАМК, специфічні функції ГАМК в цитоплазмі практично невідомі. Глутамін як ГАМК-прекурсорПри нервовій передачі із залученням ГАМК-ергічних синапсів вивільнена ГАМК частково поглинається астроцитами нейроглії, де метаболізується. Ці втрати ГАМК компенсуються переносом в зворотному напрямку речовини, що є попередником при синтезі ГАМК (ГАМК-прекурсором). Таким прекурсором є глутамін, що синтезується винятково в астроцитах. Глутамін залучається до циклу трикарбонових кислот, де перетворюється на глутамат, а той, в свою чергу, на ГАМК. Вивільнення ГАМКХімічні синапси ГАМК-ергічних нейронів містять везикули із спеціальними системами хімічного транспорту ГАМК, завдяки яким концентрація ГАМК всередині везикул в 10-20 більша, ніж в цитоплазмі. Після деполяризації мембрани нейрону відбувається злиття цих везикул з пресинаптичною мембраною, регульоване великою кількістю специфічних ферментів (синаптин, неурексини, синаптотагмін, синтакси, синаптофізин), які активуються у відповідь на зростання внутрішньоклітинною концентрації іонів Са2+. Іони кальцію потрапляють в пресинапс через кальцієві канали, що відкриваються при деполяризації мембрани нейрону. Загалом, цей процес призводить до вивільнення ГАМК в синаптичну щілину, після чого вона активує різні типи ГАМК-рецепторів, розташовані на пре- та постсинаптичній мембрані. На додаток до везикулярного, вивільнення ГАМК може відбуватись також в процесі роботи в зворотному напрямку мембранних систем ГАМК-транспорту. Цей процес має набагато більш розпливчасту локалізацію, аніж притаманне строго пресинаптичній мембрані везикулярне вивільнення, є електрично-залежним, тож може бути активованим завдяки деполяризації мембрани при проходженні нервового імпульсу. Іншою важливою рисою процесу невезикулярного вивільнення ГАМК є його незалежність від концентрації іонів кальцію. Деактивація ГАМКГАМК деактивується завдяки захвату та перенесенню в пресинаптичну ділянку нейрону, що робить можливим повторне використання нейромедіатору, або завдяки захвату навколишніми клітинами нейроглії (астроцитами), де ГАМК розкладається в процесі трансамінації та оксидації до сукцинату. В обох випадках захват та транспортування ГАМК здійснюються спеціальними ГАМК-транспортерами, частина яких неспецифічна відносно нервових клітин (тобто є і в нейронах, і в нейроглії), а частина — притаманна тільки нейрогліальним астроцитам. Функціональне значення ГАМК-інгібіювання в ЦНСГАМК-ергічна інгібуюча нервова передача дуже широко представлена в ЦНС, і є принципово важливою для функціонування мозку. Тому не дивно, що функціональні порушення синтезу та/або метаболізму ГАМК призводять до численних негативних нервових ефектів. Уявлення про важливість та роль ГАМК для нормального функціонування мозку дає перелік деяких хвороб, що спричинюються порушенням її метаболізму або порушенням функціонування ГАМК-рецепторів: це епілепсія, інсомнія, хвороба Альцгеймера, шизофренія і таке інше. Див. такожЛітератураКниги
Журнали
Посилання
|