MorfismInom kategoriteori, en abstrakt generalisering av många områden av matematiken, är morfismer eller morfier generaliseringar av funktioner. De har därför flera av de egenskaper som funktioner har, som att man kan bilda "sammansättningar" av morfismer på liknande sätt som funktionssammansättningar. I konkreta kategorier är också morfismer funktioner med vissa speciella egenskaper, men för kategorier i allmänhet behöver inte detta vara fallet. Några exempel på morfismer är homomorfier från kategorierna som studeras i universell algebra (till exempel moduler, grupper och ringar), kontinuerliga funktioner mellan topologiska rum, element i en grupp då gruppen betraktas som en speciell slags kategori, kurvor i ett topologiskt rum (vilka bildar en gruppoid), och funktorer mellan små kategorier. Sammansättningar och identiteterOm X, Y och Z är objekt i en kategori, f är en morfism mellan X och Y, och g är en morfism mellan Y och Z, så finns en morfism mellan X och Z som betecknas g o f och kallas sammansättningen av g och f. Om kategorin är konkret, så är g o f funktionssammansättningen av g och f i vanlig mening. I vilket fall är morfismsammansättning associativ i samma mening som vanlig funktionssammansättning är det: Om f, g och h är morfismer sådana att sammansättningarna g o f och h o g är definierade, så är (h o g) o f = h o (g o f). Varje objekt X i varje kategori har en identitetsmorfism idX vilken verkar som ett neutralt element under sammansättningsoperationen. Med andra ord är f o idX = f för varje morfism mellan X och något objekt Y, och idX o g = g för varje morfism mellan Y och X. Om kategorin är konkret, så är idX den vanliga identitetsavbildningen på X. Morfismer med särskilda egenskaperI samtliga fall nedan används två namnformer, en kortare på -morfi och en längre på -morfism. Förleden används också ibland som adjektiv. Om f är en given morfism, så uttrycker följande tre utsagor samma sak: "f är en isomorfi", "f är en isomorfism", och "f är iso".
Externa länkar
|