Ханойская башняХанойская башня — перестановочная головоломка в виде трёх стержней, на один из которых в виде пирамиды нанизаны восемь колец разного диаметра. Задача состоит в том, чтобы переместить пирамиду из колец на другой стержень за наименьшее число ходов. За один раз разрешается переносить только одно кольцо, причём нельзя класть большее кольцо на меньшее. История создания головоломкиЭту игру придумал французский математик Эдуард Люка в 1883 году[1], её продавали как забавную игрушку. Первоначально она называлась «Профессор Клаус (Claus) из Колледжа Ли-Су-Стьян (Li-Sou-Stian)»[1], но вскоре обнаружилось, что таинственный профессор из несуществующего колледжа — не более чем анаграмма фамилии изобретателя игры, профессора Люка (Lucas) из колледжа Сен-Луи (Saint Louis). РешениеСуществует несколько подходов к решению. Рекурсивное решениеРекурсивно решаем задачу «перенести башню из n−1 диска на 2-й стержень». Затем переносим самый большой диск на 3-й стержень, и рекурсивно решаем задачу «перенеси башню из n−1 диска на 3-й стержень». Отсюда методом математической индукции заключаем, что минимальное число ходов, необходимое для решения головоломки, равно 2n − 1, где n — число дисков[2][3]. В информатике задачи, основанные на легенде о Ханойской башне, часто рассматривают в качестве примера использования рекурсивных алгоритмов и преобразования их к нерекурсивным. «Треугольное» решениеРасположим стержни в виде треугольника. Начнём с самого маленького кольца и переложим его на любую отметку. В дальнейшем это кольцо нужно перемещать в том же направлении, что и при первом перекладывании. Затем перенесём какое-нибудь из оставшихся колец (такой ход единственный), после чего снова переложим самое маленькое кольцо и т. д. (Интересно заметить, что перенумеровав «кольца» по порядку, мы добьёмся неожиданного эффекта: чётные кольца будут перемещаться из одной вершины треугольника в другую в одном направлении, а нечётные — в противоположном направлении.) Циклическое решениеОбозначим через «1-2» такое действие: переложить диск или с 1-го стержня на 2-й, или со 2-го на 1-й, в зависимости от того, где он меньше. Тогда, чтобы решить головоломку с чётным количеством дисков, надо многократно повторять действия: 1-2, 1-3, 2-3. Если число дисков нечётно — 1-3, 1-2, 2-3. Применение кода Грея для решения
Код Грея, рефлексный двоичный код в двоичной системе счисления, в котором два соседних значения различаются только в одном двоичном разряде. Изначально код Грея предназначался для защиты от ложного срабатывания электромеханических переключателей. Сегодня коды Грея широко используются для упрощения выявления и исправления ошибок в системах связи, а также в формировании сигналов обратной связи в системах управления. Код получил имя исследователя лабораторий Bell Labs Фрэнка Грея. Он запатентовал (за номером 2632058) и использовал этот код в своей импульсной системе связи. Коды Грея могут быть применены в решении задачи о Ханойских башнях. Реализации алгоритма Пример алгоритма решения на языке C++: // Ханойские башни
#include <iostream>
using namespace std;
void hanoi_towers(int quantity, int from, int to, int buf_peg) //quantity-число колец, from-начальное положение колец(1-3),to-конечное положение колец(1-3)
{ //buf_peg - промежуточный колышек(1-3)
if (quantity != 0)
{
hanoi_towers(quantity-1, from, buf_peg, to);
cout << from << " -> " << to << endl;
hanoi_towers(quantity-1, buf_peg, to, from);
}
}
int main()
{
setlocale(LC_ALL,"rus");
int start_peg, destination_peg, buffer_peg, plate_quantity;
cout << "Номер первого столбика:" << endl;
cin >> start_peg;
cout << "Номер конечного столбика:" << endl;
cin >> destination_peg;
cout << "Номер промежуточного столбика:" << endl;
cin >> buffer_peg;
cout << "Количество дисков:" << endl;
cin >> plate_quantity;
hanoi_towers(plate_quantity, start_peg, destination_peg, buffer_peg);
return 0;
}
Пример алгоритма решения на языке Pascal: program hanoibns(input,output);
var n:integer;
procedure tower(k:integer;a,b,c:char);
begin
if k>1 then tower(k-1,a,c,b);
writeln('from ',a,' to ',b);
if k>1 then tower(k-1,c,b,a)
end;
begin
read(n);
tower(n,'A','C','B')
end.
Пример алгоритма решения на языке Haskell: hanoiSteps :: Int -> [(Int, Int)]
hanoiSteps n = step (max 0 n) 1 3 2 []
where
step 0 _ _ _ rest = rest
step n f t s rest = step (n - 1) f s t $ (f, t) : step (n - 1) s t f rest
Пример алгоритма решения на языке Python: def Hanoi(n, A, C, B):
if (n != 0):
Hanoi(n - 1, A, B, C)
print ('Move the plate from', A, 'to', C)
Hanoi(n - 1, B, C, A)
Пример алгоритма решения на языке Java: public class Hanoi {
public static void hanoiTowers(int quantity, int from, int to, int buf_peg) {
if (quantity != 0)
{
hanoiTowers(quantity-1, from, buf_peg, to);
System.out.println("" + from + " -> " + to );
hanoiTowers(quantity-1, buf_peg, to, from);
}
}
public static void main(String[] args) {
int start_peg = 1, destination_peg = 2, buffer_peg = 3, plate_quantity = 4;
hanoiTowers(plate_quantity, start_peg, destination_peg, buffer_peg);
}
}
Пример итеративного алгоритма решения на языке C #include <stdio.h>
#include <math.h>
void carryingOver(int, int, int);
main()
{
int number, countDisk, counter = 1, count;
printf("Введите количество дисков: "); /* Ханойская башня */
scanf("%d", &number);
while (counter <= pow(2, number) - 1) { /* Запускаем цикл повторений */
if (counter % 2 != 0) { /* На нечетном ходу мы будем трогать только самый маленький диск */
printf("%3d %d ", counter, 1);
carryingOver(number, counter, 1); /* С помощью этой функции определяем для данного диска перемещение */
}
else { /* Определяем диск который нужно переместить на четном ходу */
count = counter;
countDisk = 0;
while (count % 2 == 0) { /* Диск который нужно переместить */
countDisk++; /* будет числом деления номера хода на 2 без остатка */
count = count / 2;
}
printf("%3d %d ", counter, countDisk + 1);
carryingOver(number, counter, countDisk + 1);
}
counter++;
}
return 0;
}
/* Функция определения перемещения дисков */
void carryingOver(int n ,int i, int k)
{
int t, axisX, axisY, axisZ;
if (n % 2 == 0) { /* Определяем порядок осей в зависимости от четности */
axisX = 1; /* и не четности количества дисков */
axisY = 2;
axisZ = 3;
}
else {
axisX = 1;
axisY = 3;
axisZ = 2;
}
/* Номер хода можно представить единственным образом */
/* как произведение некоего нечетного числа на степень двойки */
/* k будет номером диска который мы перемещаем */
t = ((i / pow(2, k - 1)) - 1) / 2;
if (k % 2 != 0) { /* Определяем перемещение дисков для нечетного хода */
switch (t % 3) { /* Выбираем перемещение в зависимости от данного условия */
case 0:
printf("%d -> %d\n", axisX, axisY);
break;
case 1:
printf("%d -> %d\n", axisY, axisZ);
break;
case 2:
printf("%d -> %d\n", axisZ, axisX);
break;
}
}
else { /* Определяем перемещение дисков для чётного хода */
switch (t % 3) {
case 0:
printf("%d -> %d\n", axisX, axisZ);
break;
case 1:
printf("%d -> %d\n", axisZ, axisY);
break;
case 2:
printf("%d -> %d\n", axisY, axisX);
break;
}
}
}
Существуют программы визуализации решения этой головоломки. Решение для машины ТьюрингаВ 1992 году студент второго курса РГАТУ им. П. А. Соловьёва Иван Басов, ныне доктор философии (PhD) , живущий и работающий в США, предложил запрограммировать головоломку «Ханойские башни» на машине Тьюринга[4]. Тогда же Иван предложил удобный способ описания размещения дисков по стержням, где каждому диску соответствует своя ячейка ленты. Первоначально все диски находятся на стержне A, поэтому все ячейки ленты содержат символ A. Слева и справа от этих ячеек размещены символы «#», ограничивающие исходные данные (пример: «…#AAAA#…»). Блок управления первоначально указывает на самую левую ячейку с символом A, соответствующую диску минимального диаметра. Один из вариантов входных данных, предложенных Иваном Басовым, подразумевал кодировку дополнительного стержня-приёмника. Здесь же приведен упрощённый вариант задачи, где требуется переместить все диски со стержня A на любой другой стержень (либо B, либо C). Благодаря этому простому способу описания размещения дисков по стержням, Иван Басов, а также его научный руководитель В. Н. Пинаев написали каждый свою программу для машины Тьюринга[5]. В основе этих решений лежал известный простой нерекурсивный алгоритм перекладывания дисков[6]. Основная идея этого алгоритма звучит так:
В нашем случае задача упрощается, так как по условию разрешено перемещать башню на любой стержень, и поэтому нам не потребуется определять чётность количества дисков. Окончательно имеем следующий алгоритм:
С этой задачей связана следующая интересная история. В 1992 году Иван Басов, будучи студентом второго курса РГАТУ им. П. А. Соловьёва, написал исследование при содействии научных руководителей В. Н. Пинаева и Б. Я. Фалевича, которое было представлено на всероссийский конкурс студенческих научных работ. Исследуя машину Тьюринга и головоломку «Ханойские башни», он провёл анализ нескольких алгоритмов, оценил число шагов машины Тьюринга, подробно описал программную реализацию и в том числе привёл таблицу управления, подобную вышеприведенной. Рецензентом этой работы оказался известный учёный сибирской школы алгебры и логики, А. С. Морозов, который сравнил Ивана с Левшой, «подковавшим» эту программистскую «блоху». В последующие десятилетия эта задача и её модификации неоднократно предлагались на российских и международных студенческих олимпиадах по программированию[7][8][9][10]. Кроме того, пример решения головоломки «Ханойские башни» на машине Тьюринга признан более содержательным, чем операции над унарными числами, которыми изобилуют примеры в публикациях и методических пособиях по этой тематике, и рекомендован при изучении машины Тьюринга[5]. Варианты
Перемешанные Ханойские башниВ 1990 году преподаватель информатики РГАТУ им. П. А. Соловьёва В. Н. Пинаев предложил рассмотреть такую задачу: все диски расположены в произвольном порядке на всех трёх стрежнях, требуется собрать их на одном. Эта задача также всегда разрешима и названа её создателем «перемешанной Ханойской башней» или «Ханойской п-башней». Заметим, что идея этой головолмки идёт от кубика Рубика: запутаем расположение частей головоломки, а потом постараемся привести её к первоначальному виду с помощью разрешенных действий[11][12][13]. Следует отметить, что в общем случае изначальное расположение дисков может быть совершенно произвольным, и диск большего диаметра может оказаться на диске меньшего диаметра. В таком случае «Ханойская п-башня» является «сильно перемешанной». Если же изначальное расположение дисков исключает такое положение, то она является «слабо перемешанной». «Слабо перемешанная Ханойская башня» также может быть представлена методом Басова для машины Тьюринга (пример входных данных: «…#ACABC#…»)[4][5]. Сдвоенные Ханойские башниЭта головоломка также была предложена В. Н. Пинаевым и использовалась на ученических и студенческих олимпиадах по программированию под названиями «Чёрный ящик», «Кодовый замо́к» и «Светофор». Смысл головоломки состоит в том, что две случайным образом «перемешанные Ханойские башни» (или «Ханойские п-башни») закодированные методом Басова для машины Тьюринга были «соединены» общим диском минимального диаметра. Чтобы это наглядно представить, нужно абстрагироваться от физических свойств «Ханойских башен» и рассматривать их только в контексте кода Басова[4][5]. В одной из разновидностей головоломки состояния элементов кодировались цветами: красный, желтый, зеленый (почему задание и называлось «Светофор»). Исходное состояние замка генерировалось с использованием равномерно распределенного датчика случайных чисел и потому являлось произвольным. Замок открывался, если все его элементы оказывались в одинаковом состоянии (любом). Воздействовать на замок можно было через его кнопки. При нажатии на кнопку были возможны два варианта: либо ничего не изменится, либо элемент перейдет в другое состояние. В конструкции замка была предусмотрена внутренняя память из одной ячейки (недоступной пользователю). В этой ячейке хранилось состояние замка, которое определялось номером первой нажатой кнопки. Как используется и используется ли вообще эта ячейка — было неизвестно. Фактически, в зависимости от номера первого нажатого элемента замок распадался на две части: левую и правую. Каждая часть представляла собой отдельную Ханойскую башню со своими стержнями и дисками. Но диск минимального диаметра был общим для этих частей. Цвет элемента указывал, на каком стержне находится соответствующий диск. Отличие от стандартной Ханойской башни заключалось в том, что в исходном положении диски были размещены на стержнях в произвольном порядке. Задача в такой постановке называется «перемешанной Ханойской башней» или «Ханойской п-башней»[11][12][13]. Эта задача, как и многие другие, является многоуровневой. Можно было сначала собирать одну пирамиду, затем другую. А можно было собирать «одновременно» обе пирамиды. Очень важен был первый ход, который во многом определялся начальной раскраской. Действительно, если первым ходом нажать первую или последнюю кнопку, то мы будем иметь дело с одной пирамидой, но большего размера. По задаче «Светофор» в декабре 1998 года в Санкт-Петербурге был проведен первый Всероссийский очно-заочный турнир «ПИК-АСМ98». В этом турнире приняли участие программисты со всей страны[7][8][9]. С четырьмя и более стержнямиХотя вариант с тремя стержнями имеет простое рекурсивное решение, оптимальное решение Ханойской башни с четырьмя стержнями долгое время являлось нерешённой проблемой. Очевидно, что для любого количества стержней существует алгоритм для нахождения оптимальных решений, достаточно представить головоломку в виде неориентированного графа, сопоставив размещениям дисков вершины, а ходам — рёбра, и использовать любой алгоритм поиска (например, поиск в ширину) для нахождения оптимального решения. Однако эффективной стратегии определения оптимального решения для большого числа дисков нет: количество ходов, необходимое для решения головоломки с 10 стержнями и 1000 дисками, остаётся неизвестным. Существует предположительно оптимальный алгоритм Фрейма — Стюарта, разработанный в 1941 году[14]. Связанная гипотеза Фрейма — Стюарта утверждает, что алгоритм Фрейма — Стюарта всегда находит оптимальное решение. Оптимальность алгоритма Фрейма — Стюарта была экспериментально проверена вплоть до 30 дисков на 4 стержнях[15]. В 2014 году было окончательно доказано, что для четырёх стержней Алгоритм Фрейма — Стюарта является оптимальным[16]. Другие варианты решения Ханойской башни с четырьмя стержнями рассматриваются в обзорной статье Пола Стокмайера[17]. Алгоритм Фрейма — СтюартаАлгоритм Фрейма — Стюарта, дающий оптимальное решение для четырёх и предположительно оптимальное решение для большего количества стержней, описывается следующим образом:
Алгоритм может быть описан рекурсивно:
На весь процесс требуется ходов. Значение выбирается таким образом, чтобы значение этого выражения было минимальным. В случае 4 стержней, оптимальное равно , где — это функция ближайшего целого.[18] ЛегендыПридуманная профессором Люка легенда гласит, что в Великом храме города Бенарес, под собором, отмечающим середину мира, находится бронзовый диск, на котором укреплены 3 алмазных стержня, высотой в один локоть и толщиной с пчелу. Давным-давно, в самом начале времён, монахи этого монастыря провинились перед богом Брахмой. Разгневанный Брахма воздвиг три высоких стержня и на один из них возложил 64 диска, сделанных из чистого золота. Причём так, что каждый меньший диск лежит на большем. Как только все 64 диска будут переложены со стержня, на который Брахма сложил их при создании мира, на другой стержень, башня вместе с храмом обратятся в пыль и под громовые раскаты погибнет мир. Количество перекладываний в зависимости от количества колец вычисляется по формуле . Число перемещений дисков, которые должны совершить монахи, равно 18 446 744 073 709 551 615. Если бы монахи, работая день и ночь, делали каждую секунду одно перемещение диска, их работа продолжалась бы почти 585 миллиардов лет. В культуреВ рассказе Эрика Фрэнка Рассела «Ваш ход» (Now Inhale, в другом переводе — «Игра на выживание»)[19], чтобы оттянуть время казни инопланетянами, главный герой выбирает игру в Ханойскую башню с 64 дисками в качестве последней игры. Объявленные правила модифицированы для двух игроков — игроки должны перекладывать диски по одному за ход, победителем считается тот, кто сделает последний ход. Герой называет такую игру «арки-маларки» и клянётся, что «священнослужители Бенаресского храма» на Земле играют в эту игру. В фильме «Восстание планеты обезьян» Ханойскую башню используют в качестве проверки интеллекта подопытных. Обезьяна собирает головоломку из четырёх колец за двадцать ходов. Ханойская башня — одна из традиционных головоломок в видеоиграх канадской компании BioWare — в частности, «Jade Empire», «Star Wars: Knights of the Old Republic», «Mass Effect» и «Dragon Age: Inquisition». Встречается она и в квесте Legend of Kyrandia II. В сериале «Доктор Кто» (классические серии; серия «Небесный игрушечник») Игрушечник использует Ханойскую башню из 10 колец как задание для Доктора, при этом правила усложнены: нужно собрать её за точную последовательность из 1023 ходов. См. такжеПримечания
Ссылки
|