Формула Лоренца — ЛоренцаФо́рмула Ло́ренца — Ло́ренца связывает показатель преломления вещества с электронной поляризуемостью частиц (атомов, ионов, молекул), из которых оно состоит. Формулу получили датский физик Людвиг В. Лоренц (дат. Ludvig Valentin Lorenz ) и голландский физик Хендрик А. Лоренц (нидерл. Hendrik Antoon Lorentz) в 1880 году независимо друг от друга[1][2]. ОпределениеЕсли вещество состоит из частиц одного сорта, то формула имеет вид[3]: где — показатель преломления, — количество частиц в единице объёма, а — их поляризуемость. Уточним, что под поляризуемостью частицы здесь понимается коэффициент , связывающий напряжённость электрического поля , действующего на частицу, с дипольным моментом , образующимся у частицы под действием этого поля[4]: Здесь и далее жирным шрифтом выделяются векторные величины. Формулу записывают также в виде: где — молекулярная масса вещества, — его плотность, а — постоянная Авогадро. При этом величину называют молекулярной рефракцией. Если вещество состоит из частиц нескольких сортов с поляризуемостями и объёмными концентрациями , то формула принимает вид: Вывод формулы основан на рассмотрении микроскопического поля и его взаимодействия с атомами, молекулами и ионами вещества. При выводе предполагается, что среда является изотропной, а составляющие её частицы собственным дипольным моментом не обладают[5]. ОбсуждениеВоздействие внешнего электромагнитного поля с относительно высокими частотами, соответствующими видимому и УФ-диапазону спектра, приводит к смещению только электронных оболочек относительно атомных ядер, в то время как более массивные частицы (атомы и ионы) за период колебаний поля сместиться с занимаемых ими мест не успевают. Соответственно, в поляризацию среды вносит вклад только электронная поляризация, и показатель преломления оказывается связан с электронной поляризуемостью частиц формулой Лоренца — Лоренца. При более низких частотах колебаний поля атомы и ионы успевают смещаться под действием поля, и поэтому вносят свой вклад в общую поляризацию. В результате становится необходимым, помимо электронной поляризуемости, учитывать атомную и ионную поляризуемости. Аналогом формулы Лоренца — Лоренца для постоянных полей является формула Клаузиуса — Моссотти[6], описывающая связь диэлектрической проницаемости вещества с поляризуемостями составляющих его частиц: В полярных диэлектриках частицы среды обладают собственным дипольным моментом, то есть таким, который они имеют и в отсутствие внешнего электрического поля. Непосредственное применение формулы Лоренца — Лоренца в её обычном виде в таких случаях невозможно. Дальнейшим развитием формулы Лоренца — Лоренца, пригодным в том числе и для случая полярных диэлектриков (но для относительно низких частот колебаний поля), стала формула формула Ланжевена — Дебая[7]. Формула Лоренца — Лоренца лежит в основе структурной рефрактометрии. Она широко используется при изучении и контроле составов различных веществ, для исследования их строения и превращений, происходящих в результате протекания химических реакций[8][9]. Классическая теория дисперсииФормула Лоренца — Лоренца является одним из оснований теории дисперсии света в классическом приближении[5][10]. В этой теории оптические электроны рассматриваются как дипольные осцилляторы, характеризуемые собственной частотой . В случае, когда затуханием колебаний электронов можно пренебречь[11], уравнение колебаний имеет вид: где — смещение электрона из положения равновесия, — вторая производная по времени (ускорение электрона), и — заряд и масса электрона соответственно, а — напряжённость электрического поля. В результате решения уравнения для монохроматического поля, изменяющегося с частотой , сначала получается зависимость , а затем и поляризуемость : После подстановки полученного выражения в формулу Лоренца — Лоренца возникает дисперсионная формула вида: Обычно свой вклад в формирование показателя преломления вносят несколько линий поглощения с частотами . В таком случае дисперсионная формула принимает вид: где — безразмерные коэффициенты (силы осцилляторов), показывающие эффективность участия соответствующих осцилляторов в явлениях дисперсии и удовлетворяющие правилу . История Хендрик А. Лоренц Людвиг В. Лоренц Статьи Людвига В. Лоренца[12] и Хендрика А. Лоренца[13] с сообщениями о получении формулы были опубликованы практически одновременно в 1880 году. М. Борн и Э. Вольф такое одновременное получение результата учёными с почти одинаковыми (в оригинальном написании) фамилиями называют «удивительным совпадением»[5]. Сам Хендрик Лоренц в своей книге писал так: «…этот результат был найден Лоренцом в Копенгагене за несколько времени до того, как я вывел его из электромагнитной теории света, что, конечно, является любопытным случаем совпадения»[14]. Хотя Хендрик А. Лоренц не был тем, кто первым вывел формулу, и на эту роль не претендовал, в её наименовании, обычно употребляемом в англоязычной литературе, его имя стоит в начале: «Lorentz — Lorenz equation», «Lorentz — Lorenz formula» или «Lorentz — Lorenz relation». Ранее, до того, как в русской научно-технической литературе сложилась общепринятая традиция, использовались различные варианты наименования формулы, включая такие, как формула «Лоренц — Лоренца», «Лоренц — Лорентца», «Лорентц — Лоренца» и «Лорентца — Лоренца». В своё время значение формулы Лоренца — Лоренца не исчерпывалось только тем, что она дала возможность количественного описания формирования значения показателя преломления веществ. Как писали М. Борн и Э. Вольф, «…она служит мостом, связывающим феноменологическую теорию Максвелла с теорией атомного строения вещества»[5]. Несмотря на солидный «возраст», формулу Лоренца — Лоренца в настоящее время не только достаточно широко применяют, но и продолжают развивать, расширяя возможности её использования[15]. См. такжеПримечания
|