Впервые сформулирована и доказана Блезом Паскалем в возрасте 16 лет как обобщение теоремы Паппа. Эту теорему Паскаль взял за основание своего трактата о конических сечениях. Сам трактат пропал и известно лишь его краткое содержание по письму Лейбница, который во время своего пребывания в Париже имел его в своих руках, и краткое изложение основных теорем этого трактата, составленное самим Паскалем (Опыт о конических сечениях). Сам Паскаль считал пару прямых в теореме Паппа коническим сечением, а теорему Паппа частным случаем своей теоремы.
Возможное доказательство основано на последовательном применении теоремы Менелая.
Проективным преобразованием можно перевести описанную конику в окружность, при этом условие теоремы сохранится. Для окружности теорема может быть доказана из существования изогонального сопряжения.
В случае выпуклого многоугольника, вписанного в окружность, можно осуществить проективное преобразование, оставляющее окружность на месте, а прямую, проходящую через точки пересечения двух пар противоположных сторон увести на бесконечность. В этом случае утверждение теоремы станет очевидным.
Если главные диагонали шестиугольника пересекаются в одной точке, то соответствующая прямая, возникающая в теореме Паскаля, является полярой этой точки относительно коники, в которую вписан шестиугольник.
В общем случае, прямая из теоремы Паскаля для шестиугольника, вписанного в конику , является полярой относительно точки из теоремы Брианшона для шестиугольника, образованного касательными к в вершинах исходного шестиугольника.
Теорема верна и в том случае, когда две или даже три соседних вершины совпадают (но не более чем по две в одной точке). В этом случае в качестве прямой, проходящей через две совпадающие вершины, принимается касательная к линии в этой точке. В частности:
Касательная к линии 2-го порядка, проведённая в одной из вершин вписанного пятиугольника, пересекается со стороной, противоположной этой вершине, в точке, которая лежит на прямой, проходящей через точки пересечения остальных пар несмежных сторон этого пятиугольника.
Если ABCD ― четырёхугольник, вписанный в линию 2-го порядка, то точки пересечения касательных в вершинах С и D соответственно со сторонами AD и ВС и точка пересечения прямых АВ и CD лежат на одной прямой.
Если ABCD ― четырёхугольник, вписанный в линию 2-го порядка, то точки пересечения касательных в вершинах С и D, прямых AC и BD, а также прямых AD и BC лежат на одной прямой.
Точки пересечения касательных в вершинах треугольника, вписанного в линию 2-го порядка, с противоположными сторонами лежат на одной прямой.
Эта прямая называется прямой Паскаля данного треугольника.
В 1847 появилось обобщение теоремы Паскаля, сделанное Мёбиусом, которое звучит так:
Если многоугольник с сторонами вписан в коническое сечение и противоположные его стороны продолжены таким образом, чтобы пересечься в точке, то если этих точек лежат на прямой, последняя точка будет лежать на той же прямой.
Теорема Киркмана: Пусть точки , , , , и лежат на одном коническом сечении. Тогда прямые Паскаля шестиугольников , и пересекаются в одной точке.
D. Fraivert. The theory of a convex quadrilateral and a circle that forms Pascal points - the properties of Pascal points on the sides of a convex quadrilateral // Journal of Mathematical Sciences: Advances and Applications. — 2016. — Т. 40. — P. 1–34. — doi:10.18642/jmsaa_7100121666.