На плоскости имеется точка, инвариантная относительно каждого преобразования. Существует два бесконечных семейства дискретных двумерных точечных групп. Группы определяются параметром n, равным порядку подгруппы вращений. Также параметр n равен показателю группы.
На плоскости имеется прямая, которая переходит в себя при каждом преобразовании. При этом отдельные точки этой прямой могут не оставаться неподвижными.
Группы p1 и p2 с зеркальной симметрией встречаются во всех классах. Связанная чистая группа Коксетера отражений дана для всех классов, за исключением косых.
В приведенной ниже таблице на пересечении строки, соответствующей группе , и столбца, соответствующего группе , находится минимальный индекс подгруппы , изоморфной . На диагонали находится минимальный индекс собственной подгруппы, изоморфной объемлющей группе.
↑H. S. M. Coxeter, W. O. J. Moser. Generators and Relations for Discrete Groups. Berlin:Springer, 1972. § 4.6, Table 4
Литература
D. Hestenes[англ.], J. Holt. The Crystallographic Space groups in Geometric algebra // Journal of Mathematical Physics.. — 2007. — Т. 48, 023514.
John H. Conway, Heidi Burgiel, Chaim Goodman-Strass. The Symmetries of Things. — A.K. Peters, 2008. — ISBN 978-1-56881-220-5. (Orbifold notation for polyhedra, Euclidean and hyperbolic tilings)
John H. Conway, Derek A. Smith. On Quaternions and Octonions: Their geometry, arithmetic, and symmetry. — Natick, MA: A K Peters, Ltd., 2003. — ISBN 978-1-56881-134-5.
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6[1]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
Coxeter, H. S. M. and Moser, W. O. J. Generators and Relations for Discrete Groups. — New York: Springer-Verlag, 1980. — ISBN 0-387-09212-9.
N.W. Johnson.Chapter 11: Finite symmetry groups // Geometries and Transformations. — 2015.