Серединный треугольникСерединный треугольник (также срединный треугольник или дополнительный треугольник) — треугольник, построенный на серединах сторон данного треугольника, частный случай серединного многоугольника. СвойстваСерединный треугольник можно рассматривать как образ исходного треугольника при гомотетии с центром в центроиде с множителем −½. Таким образом, серединный треугольник подобен исходному и имеет тот же самый центроид и медианы, что и исходный треугольник . Отсюда также следует, что периметр серединного треугольника равен полупериметру треугольника и что его площадь равна четверти площади треугольника . Более того, четыре треугольника, на которые разбивается исходный треугольник серединным треугольником, равны по трём сторонам, так что их площади равны и составляют четверть площади исходного треугольника[1]. В этой связи иногда «серединными» называют сразу все четыре равных между собой внутренних треугольника, получаемых из заданного треугольника проведением в нём трёх средних линий (в наиболее традиционной терминологии серединным называют только один из них — центральный). Ортоцентр серединного треугольника совпадает с центром описанной окружности данного треугольника , этот факт даёт средства для доказательства того, что центр описанной окружности, центроид и ортоцентр лежат на одной прямой — прямой Эйлера. Серединный треугольник является подерным треугольником центра описанной окружности. Окружность девяти точек является описанной для серединного треугольника, а потому центр девяти точек является центром описанной вокруг серединного треугольника окружности. Точка Нагеля серединного треугольника является центром вписанной окружности исходного треугольника[2]. Серединный треугольник равен треугольнику, вершинами которого служат середины отрезков, соединяющих ортоцентр и его вершины (треугольник Эйлера)[3]. Центр вписанной окружности треугольника лежит в серединном треугольнике[4]. Точка внутри треугольника является центром вписанного в треугольник эллипса[англ.] тогда и только тогда, когда эта точка лежит внутри серединного треугольника[5]. Серединный треугольник является единственным вписанным треугольником, для которого никакой из трёх остальных треугольников не имеет площадь, меньшую площади этого треугольника[6]. Центр окружности, вписанной в серединный треугольник данного треугольника , является центром масс периметра треугольника (центром Шпикера), этот центр является центром тяжести однородной проволочной фигуры, соответствующей треугольнику. Ортополюс P прямой линии ℓ треугольника является радикальным центром трех окружностей, которые касаются прямой линии ℓ и имеют центры в вершинах антидополнительного треугольника по отношению к данному треугольнику.[7] Инцентр данного треугольника является точкой Нагеля треугольника, образованного его 3 средними линиями (серединного треугольника).[8] КоординатыПусть — длины сторон треугольника . Трилинейные координаты вершин серединного треугольника задаются формулами: Антисерединный треугольникЕсли — серединный треугольник для , то является антисерединным треугольником (антидополнительным) для . Антикомплементарный треугольник для образуется тремя прямыми, параллельными сторонам — параллельно через точку , параллельно через точку и параллельно через точку . Трилинейные координаты вершин антисерединного треугольника задаются формулами: Примечания
Литература
Ссылки
|