Нуль функцииНуль функции в математике — элемент из области определения функции, в котором она принимает нулевое значение. Например, для функции , заданной формулой является нулём, поскольку
Понятие нулей функции можно рассматривать для любых функций, область значений которых содержит нуль или нулевой элемент соответствующей алгебраической структуры. Для функции действительного переменного нулями являются значения, в которых график функции пересекает ось абсцисс. Нахождение нулей функции часто требует использования численных методов (к примеру, метод Ньютона, градиентные методы). Одной из нерешённых математических проблем является нахождение нулей дзета-функции Римана. Корень многочленаОсновная теорема алгебрыОсновная теорема алгебры утверждает, что каждый многочлен степени n имеет n комплексных корней, с учётом их кратности. У кубического уравнения, как показано выше, всегда три комплексных корня, с учётом кратности. Все мнимые корни многочлена, если они есть, всегда входят сопряжёнными парами, только если все коэффициенты многочлена вещественны. Каждый многочлен нечётной степени с вещественными коэффициентами имеет по крайней мере один действительный корень. Связь между корнями многочлена и его коэффициентами устанавливает теорема Виета. Комплексный анализПростой нуль голоморфной в некоторой области функции — точка , в некоторой окрестности которой справедливо представление , где голоморфна в и не обращается в этой точке в нуль. Нуль порядка голоморфной в некоторой области функции — точка , в некоторой окрестности которой справедливо представление , где голоморфна в и не обращается в этой точке в нуль. Нули голоморфной функции изолированы. Другие специфические свойства нулей комплексных функций выражаются в различных теоремах: Литература
|