НильрадикалНильрадикал коммутативного кольца — идеал, состоящий из всех его нильпотентных элементов. Нильрадикал действительно является идеалом, поскольку сумма двух нильпотентных элементов нильпотентна (по формуле бинома Ньютона), как и произведение нильпотентного и произвольного элементов. Также нильрадикал можно охарактеризовать как пересечение всех простых идеалов кольца. Если — произвольное коммутативное кольцо, то факторкольцо по его нильрадикалу не содержит нильпотентных элементов. Каждый максимальный идеал прост, поэтому радикал Джекобсона — пересечение всех максимальных идеалов — содержит нильрадикал. В случае артинова кольца они просто совпадают, при этом нильрадикал можно описать как максимальный нильпотентный идеал. В общем случае, если нильрадикал конечно порождён, то он нильпотентен. Некоммутативные обобщенияВ некоммутативном случае можно выделить три способа обобщения понятия нильрадикала. Нижний нильрадикал некоммутативного кольца определяется как пересечение всех первичных идеалов. Верхний нильрадикал — как идеал, порожденный всеми нильпотентными идеалами. Радикал Левицкого по размеру находится между ними, и определяется как максимальный локально нильпотентный идеал[англ.]. Если кольцо является нётеровым, все три определения совпадают. Литература
|