Медицинская физика занимается применением концепций и методов физики для профилактики, диагностики и лечения заболеваний человека с конкретной целью улучшения здоровья и благополучия человека.[1] С 2008 года медицинская физика включена в категорию медицинских профессий в соответствии с Международным стандартом классификации профессий[2]Международной организации труда.[3] С 2010 года «медицинский физик» включен в перечень квалификаций, требующих высшего образования в России.[4]
Университетские кафедры бывают двух типов. Первый тип в основном связан с подготовкой студентов к карьере больничного медицинского физика, а научные исследования направлены на совершенствование практики данной профессии. Второй тип (все чаще называемый «биомедицинской физикой») имеет гораздо более широкий охват и может включать исследования в любых областях применения физики к медицине, от изучения биомолекулярной структуры до микроскопии и наномедицины.
История: Нобелевские лауреаты по физике и медицине в сфере медицинской физики
Нобелевских премий, в разное время за научные открытия, значимые в сфере медицинской физики, были удостоены:
в 1901 году Вильгельм Конрад Рентген — «в знак признания исключительных услуг, которые он оказал науке открытием замечательных лучей», названных впоследствии в его честь[6]
Решение научных проблем: комплексное решение проблем, включающее определение оптимальной производительности или оптимизации использования медицинских устройств, выявление и устранение возможных причин неправильного использования, а также подтверждение того, что предлагаемые решения восстановили работоспособность и использование устройства до приемлемого состояния. Все виды деятельности должны основываться на современных научных данных или собственных исследованиях, когда имеющихся данных недостаточно.
Дозиметрические измерения: измерение доз, переносимых пациентами, добровольцами в биомедицинских исследованиях и лицами, подвергнутыми немедицинскому облучению; выбор, калибровка и обслуживание дозиметрических приборов; независимая проверка доз, связанных с количеством, предоставляемым устройствами регистрации доз; измерение доз, связанных с количеством, требуемым в качестве входных данных для устройств регистрации или оценки доз. Измерения должны основываться на современных рекомендуемых методах и протоколах. Включает дозиметрию всех физических агентов.
Безопасность пациентов / управление рисками: наблюдение за медицинскими приборами и оценка клинических протоколов для обеспечения постоянной защиты пациентов, добровольцев в биомедицинских исследованиях и лиц, подвергнутых немедицинскому облучению от вредных воздействий физических агентов в соответствии с последними опубликованными доказательствами или собственными исследованиями, когда имеющихся доказательств недостаточно. Включает разработку карт оценки рисков.
Профессиональная и общественная безопасность / управление рисками: Наблюдение за медицинскими приборами и оценка клинических протоколов в отношении защиты работников и общественности при воздействии на пациентов, добровольцев в биомедицинских исследованиях и лиц, подвергнутых немедицинскому воздействию. Включает разработку карт оценки рисков совместно с другими экспертами, занимающимися профессиональными / общественными рисками.
Клиническое управление медицинскими устройствами: спецификация, отбор, приемочные испытания, ввод в эксплуатацию и контроль качества медицинских устройств в соответствии с последними опубликованными международными рекомендациями, а также управление и надзор за соответствующими программами. Тестирование должно проводиться на основе современных рекомендуемых методик и протоколов.
Клиническое участие: проведение, участие и контроль ежедневных процедур радиационной защиты и контроля качества для обеспечения непрерывного эффективного и оптимального использования медицинских радиологических устройств, включая оптимизацию для конкретного пациента.
Развитие качества и экономической эффективности услуг: руководство внедрением новых медицинских радиологических устройств в клиническую службу, внедрение новых медицинских физических услуг и участие во внедрении/разработке клинических протоколов/методов, уделяя должное внимание экономическим вопросам.
Экспертная консультация: предоставление экспертных консультаций внешним клиентам (например, клиникам, не имеющим собственной экспертизы в области медицинской физики).
Образование медицинских работников (в том числе обучающихся по медицинской физике: содействие качественному медицинскому профессиональному образованию через деятельность по передаче знаний, касающихся научно-технических знаний, навыков и компетенций, обеспечивающих клинически эффективное, безопасное, научно обоснованное и экономичное использование медицинских радиологических устройств). Участие в обучении студентов медицинской физики и организации программ ординатуры по медицинской физике.
Оценка технологий здравоохранения: Принятие на себя ответственности за физическую оценку технологий здравоохранения, связанных с медицинскими радиологическими устройствами и /или медицинским использованием радиоактивных веществ/источников.
Инновации: разработка новых или модификация существующих устройств (включая программное обеспечение) и протоколов для решения до сих пор нерешенных клинических проблем.[12][13]
Медицинская биофизика и биомедицинская физика
В некоторых учебных заведениях есть кафедры или программы, носящие название «медицинская биофизика», "биомедицинская физика " или «прикладная физика в медицине». Как правило, они относятся к одной из двух категорий: междисциплинарные факультеты, объединяющие биофизику, радиобиологию и медицинскую физику под одной крышей; и программы бакалавриата, которые готовят студентов к дальнейшему изучению медицинской физики, биофизики, или медицина. Большинство научных концепций бионанотехнологии заимствованы из других областей. Биохимические принципы, которые используются для понимания материальных свойств биологических систем, занимают центральное место в бионанотехнологии, потому что те же самые принципы должны использоваться для создания новых технологий. Свойства материалов и приложения, изучаемые в бионанонауке, включают механические свойства (например, деформация, адгезия, разрушение), электрические/электронные (например, электромеханическая стимуляция, конденсаторы, накопление энергии/батареи), оптические (например, поглощение, люминесценция, фотохимия), тепловые (например, термомутабельность, управление температурным режимом), биологические (например, как клетки взаимодействуют с наноматериалами, молекулярные изъяны/дефекты, биосенсорика, биологические механизмы, такие как механоощущение), нанонауки о болезнях (например, генетические заболевания, рак, недостаточность органов/тканей), а также вычислительные (например, ДНК вычислительная техника) и сельское хозяйство (целевая доставка пестицидов, гормонов и удобрений.
Области специализации
Международная организация медицинской физики (IOMP) признает основные области применения и направления деятельности медицинской физики.
Физика медицинской визуализации
Физика медицинской визуализации также известна как физика диагностической и интервенционной радиологии. Клинические (как «штатные», так и «консультирующие») физики[14] обычно занимаются областями тестирования, оптимизации и обеспечения качества таких областей физики диагностической радиологии, как рентгенография, рентгеноскопия, маммография, ангиография и компьютерная томография. , а также методы неионизирующего излучения, такие как УЗИ и МРТ. Они также могут заниматься вопросами радиационной защиты, такими как дозиметрия (для персонала и пациентов). Кроме того, многие физики-визуалисты часто также связаны с системами ядерной медицины, включая однофотонную эмиссионную компьютерную томографию (ОФЭКТ) и позитронно-эмиссионную томографию (ПЭТ). Иногда физики-визуалисты могут заниматься клиническими областями, но в исследовательских и учебных целях[15], например, для количественной оценки внутрисосудистого ультразвука как возможного метода визуализации конкретного сосудистого объекта.
В некоторых случаях для научных исследований и диагностики структур и функций на микро- нано-уровне целесообразно использование электронной микроскопии[16][17].
Ядерная медицина — это раздел медицины, который использует излучение для получения информации о функционировании конкретных органов человека или для лечения заболеваний. Можно легко визуализировать щитовидную железу, кости, сердце, печень и многие другие органы, а также выявить нарушения в их функционировании. В некоторых случаях источники излучения могут быть использованы для лечения пораженных органов или опухолей. Пять нобелевских лауреатов были тесно связаны с использованием радиоактивной диагностики в медицине. Более 10 000 больниц по всему миру используют радиоизотопы в медицине, и около 90 % процедур предназначены для диагностики. Наиболее распространенным радиоизотопом, используемым в диагностике, является технеций-99m, с которым проводится около 30 миллионов процедур в год, что составляет 80 % всех процедур ядерной медицины во всем мире.[23]
Физика здоровья, термин употребляемый в англоязычном секторе, также известна как радиационная безопасность или радиационная защита. Физика здоровья — это прикладная наука изучающая вопрос защиты здоровья от радиационного излучения опираясь на законы физики. связанная с распознаванием, оценкой и контролем опасных для здоровья факторов, чтобы обеспечить безопасное использование и применение ионизирующего излучения. Специалисты в области медицинской физики способствуют совершенствованию науки и практики в области радиационной защиты и безопасности. К данному разделу относятся исследования в таких сферах как:
фоновое излучение, радиационная защита, дозиметрия, физика здоровья, радиологическая защита пациентов.
В России развивалось направление «радиационная гигиена», организованы профильные НИИ, издается одноимённый журнал, действуют нормы радиационной безопасности НРБ-99[24]
Физика неионизирующего медицинского излучения
Некоторые аспекты физики неионизирующего излучения могут рассматриваться в рамках физики радиационной защиты или диагностической визуализации. Методы визуализации включают МРТ, оптическую визуализацию и ультразвуковые исследования. В соответствии с соображениями безопасности, а также в связи с распространенностью «лазерной медицины» сюда включают и лазеры, за изобретение которых Нобелевскую премию получили в 1964 году советские ученые Александр Прохоров и Николай Басов.
Измерения в физиологии человека и физических факторов окружающей среды
Физиологические измерения также использовались для мониторинга и измерения различных физиологических параметров. Многие методы физиологических измерений неинвазивны и могут использоваться в сочетании с другими мало-инвазивными методами или в качестве альтернативы им. Методы измерения включают электрокардиографию, электроэнцефалографию, первые измерения скорости нервного импульса[25], магнитного поля одиночного нейрона[26] и пр. Ряд областей могут охватываться другими специальностями, например, медицинской инженерией или сосудистой наукой.[27]
Другие области, тесно связанные с медицинской физикой, включают области, связанные с медицинскими данными, информационными технологиями и информатикой в сфере медицины.
К 2020 году Международная инициатива по изучению мозга, его коннектома, объединяла ряд национальных мегапроектов (американская BRAIN Initiative, Европейский Human Brain Project, China Brain Project, Brain/MINDS в Японии, Canadian Brain Research Strategy, Australian Brain Alliance, Korea Brain Initiative) с целями, поддерживающими взаимодействие между странами, чтобы обеспечить синергетическое взаимодействие с междисциплинарными подходами, вытекающими из последних исследований в области нейронаук и создания искусственного интеллекта[31], в том числе методом «обратной сборки».
Опубликованы данные о перспективах потребностей в медицинских физиках в мире[32].
Подготовка медицинских физиков в России продолжает совершенствоваться[33][34]. Опубликовано состояние образование медицинской физике в Европе[35], а также «Глобальный список выпускных программ по медицинской физике»[36]
Законодательные и консультативные органы
Международная комиссия по радиационным единицам и измерениям
↑Medical Physicists (Revised definition provided by International Organisation for Medical Physicists) // ISCO-08 Structure, index correspondence with ISCO-88 [1]Архивная копия от 3 января 2023 на Wayback Machine
↑Guibelalde E., Christofides S., Caruana C. J., Evans S. van der Putten W. (2012). Guidelines on the Medical Physics Expert' a project funded by the European Commission
↑Caruana C.J., Christofides S., Hartmann G.H. (2014) European Federation of Organisations for Medical Physics (EFOMP) Policy Statement 12.1: Recommendations on Medical Physics Education and Training in Europe 2014 Physica Medica — European Journal of Medical Physics, 30:6, p598-603
↑Das, S.; Thorek, D. L. J.; Grimm, J. (2014). «Cerenkov Imaging». Emerging Applications of Molecular Imaging to Oncology. Advances in Cancer Research. Vol. 124. pp. 213-34.
↑Jarvis, Lesley A. et al.(2014). «Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time». International Journal of Radiation Oncology, Biology, Physics. 89 (3): 615—622.
↑Давыдов М. И. и др. Анализ состояния и концепция модернизации радиационной онкологии и медицинской физики в России (краткое изложение) //Медицинская физика. — 2013. — №. 2. — С. 8-19.
↑Костылев В. А. и др. О подготовке медицинских физиков для лучевой терапии в Международном Учебном Центре АМФР //Вопросы онкологии. — 2015. — Т. 61. — №. 1. — С. 20-24.