Ещё ранее, до учреждения единой Медали Бенджамина Франклина, с 1915 по 1997 годы Институтом Франклина присуждалась престижная Медаль Франклина (англ.Franklin Medal). Её лауреатами были всемирно известные учёные, дважды премии удостаивались представители российской науки: в 1944 году (в годы Второй мировой войны) — Пётр Леонидович Капица, в 1974 году (в годы Холодной войны) — Николай Николаевич Боголюбов.
Лауреаты
Эта статья или раздел содержит незавершённый перевод с английского языка.
Вы можете помочь проекту, закончив перевод, см. также рекомендации.
За открытие и объяснение экспериментов по прионам, новому классу патогенов, которые вызывают разрушение головного мозга (англ.), что позволило понять эпидемию губчатой энцефалопатии крупного рогатого скота (коровьего бешенства) в Великобритании и её возможная передача людям.
За применение сверхбыстрых лазеров для исследования химических реакций, способствующих формированию новой области исследований под названием «фемтохимия».
За их эпохальное экспериментальное подтверждение предсказания Бозе и Эйнштейна (1925), которые утверждали, на основании теоретических рассуждений, что разреженный газ может конденсироваться в большие квантово-механические системы и демонстрировать свойства, которые обычно встречаются только на атомном или молекулярном уровне.
За основополагающие вклады в понимание способов взаимодействия растений с их окружающей средой, использование этого знания для измерений влияния на состав воздуха, эффектов влияния состава воздуха на растения и окружающую среду в целом.
За разнообразные основополагающие вклады в значительное продвижение и расширение области метатезиса олефинов, уникальный процесс разрыва и создания углерод-углеродной связи (англ.), который значительно расширил возможности химиков по созданию широкого круга лекарств и других полезных сложных молекул, улучшенных каучуков и пластмасс для лабораторных и промышленных применений.
За изобретение спекл-интерферометрии, которая позволяет большим наземным астрономическим телескопам достигнуть полной величины теоретических угловых разрешений, и за новаторскую работу в расширении метода Майкельсона для выполнения интерферометрии с длинными базами получить угловое разрешение порядка угловых секунд.
За новаторскую работу в области вычислительной химии, его основополагающий вклад в развитие молекулярной механики (англ.) серии силовых полей (англ.), их широко распространенное применение к фундаментальному пониманию молекулярной структуры (англ.) и энергетики, и их внедрение в качестве важного инструмента для практикующих химиков.
За его фундаментальные вклады в оптоэлектронную технологию нитрида галлия, которая привела к развитию синего/фиолетового лазерных диодов (англ.) и в реализации светодиодов высокой яркости. Эти устройства улучшили сегодняшнюю технологию и имеют потенциал для революции в индустрии освещения. Успех д-ра Накамура в эпитаксии нитрида галлия привел к началу исследований во всем мире в области полупроводниковых технологий нитрида галлия.
За её широкий спектр достижений в кристаллохимии, весомые вклады в области энергии связей, исследования керамики и материалов, химических равновесий, геологии, петрологии мантии и термодинамики. Например, её выводы убедительно указали на состав материалов на глубине в сотни километров под поверхностью Земли, недоступных для непосредственного наблюдения.
За её фундаментальный вклад в этнографический анализ, разговорный анализ (англ.) и совместные проектные методы (англ.) для разработки интерактивных компьютерных систем. Её методы разработки систем изменили парадигму проектирования интерактивных систем.
За новаторские разработки сверхбыстрой и многомерной (англ.) спектроскопии, и их применение для получения фундаментального понимания на молекулярном уровне динамики в сложных системах (конденсированных фаз и биомолекул), в том числе передача энергии в твёрдых телах, механизмов реакций в жидких растворах, привязка малых молекул к гемоглобину, и наблюдение за структурными изменениями в белках.
За большой вклад в прогнозировании погоды и климата с помощью численных методов. Их основополагающие и пионерские исследования привели к первым компьютерным моделям погоды и климата, а также к пониманию общей циркуляции атмосферы, в том числе переносу тепла и влаги, которые определяют климат Земли. Кроме того, Смагоринский сыграл ведущую роль в создании нынешней глобальной сети наблюдений за атмосферой, а лидерские усилия Филлипса способствовали развитию эффективных методов использования данных наблюдений в системах обработки данных.
За его глубокое и творческое использование общих структурных элементов в дизайне строений с длиннопролетными конструкциями и высотных зданий, которое включает в себя самое высокое здание в мире, за его ведущую роль в исследованиях разрушения структур строений, связанных с переводом этих исследований разрушений в уроки для разработки безопасных структур, а также за его неустанные усилия, чтобы мотивировать школьников сделать карьеру в проектировании зданий и сооружений, архитектуре и строительной промышленности
for his fundamental research on the production of graphite whiskers and the determination of their microstructure and properties, for his pioneering development efforts in the production of the world’s first continuously processed carbon fibers and the world’s first high modulus, high strength carbon fibers using rayon precursors, and for his contributions to the development of carbon fibers from alternative starting materials.
for his contributions to the understanding of computational complexity. His work helps programmers find workable solution procedures, avoiding approaches that would fail to find a solution in a reasonable amount of time. Scientific, commercial or industrial situations where his work applies include establishing least-cost schedules for industrial production, transportation routing, circuit layout, communication network design, and predicting the spatial structure of a protein from its amino acid sequencing.
for his creative synthesis of theory and experiment demonstrating that tilted, layered liquid crystal phases of chiral molecules are ferroelectric, thus launching both fundamental scientific advancement in the field of soft condensed matter physics and the development of liquid crystal displays that meet the demands of current technology.
for her advancements in understanding how the cell preserves the ends of chromosomes—telomeres—while replicating its DNA. Her breakthroughs in understanding the protective role of telomeres have increased our understanding of aging and cancer.
for his fundamental contributions to our understanding of how language is represented in the mind, and for developing techniques that enable computers to process efficiently the wide range of human languages. These advances have led to new methods for computer translation.
for his path-breaking contributions leading to our modern understanding of sub-atomic particles-the Standard Model. His work has revolutionized our ideas about the nature of the most fundamental particles and the space through which they move.
for his pioneering and innovative ideas for using seismic reflections to identify sequences of subsurface rock layers, greatly enhancing exploration for oil-containing rock. He also recognized that similar changes in the rock record appear worldwide and can be attributed to global changes in sea level, thus contributing to greater understanding of the earth’s geological history.
for developing an efficient technique, known as the Viterbi Algorithm, that has advanced the design and implementation of modern space and wireless communication systems, including cellular telephony and digital image transmission from the distant reaches of our solar system. In addition, Dr.Viterbi played a leading role in the development of Code Division Multiple Access (CDMA) wireless technology, which allows multiple cellular phones to communicate effectively and simultaneously over a common frequency.
for revolutionizing engineering and scientific computation and engineering design methods through his formulation and development of the finite element method, and for his innovative leadership in applying the method to the field of earthquake engineering with special emphasis on the seismic performance of dams.
for his achievements in synthetic organic chemistry, particularly for the development of methods for preparing complex substances found in nature, and their emerging applications in the field of cancer treatment.
for advancing our understanding of how natural and human activities influence landscapes, especially for the first comprehensive explanation of why rivers have different forms and how floodplains develop. Their contributions form the basis of modern water resource management and environmental assessment.
for the development of the field of user-centered design, which utilizes our understanding of how people think to develop technologies designed to be easily usable.
for his discovery of neuronal replacement in the adult vertebrate brain, and the elaboration of the mechanism and choreography of this phenomenon; and also for showing that neuronal stem cells are the responsible agents, thereby generating a completely new approach to the quest for cures for brain injury and degenerative disease.
for the development of new techniques for studying molecules, including unstable species that could not be examined otherwise, by embedding them in extremely small and ultra-cold droplets of helium. Their work also led to a better understanding of the extraordinary properties of superfluid helium, such as its ability to flow without friction.
for his pioneering achievements in developing the chemical analysis tool of mass spectrometry and using it to determine the structure of complex molecules of biological and medical interest.
for inventing computer memory circuits called DRAMs that are small, inexpensive, and fast enough to permit powerful, affordable personal computers, and for contributing to the development of the mathematical formula used in shrinking circuits to allow more speed and complexity.
for outstanding contributions to understanding the fundamental and technological aspects of the solidification of metallic alloys, including research leading to the development of a new industry known as semi-solid metalworking.
for discovering that the three known types of elementary particles called neutrinos change into one another when traveling over sufficiently long distances, and that neutrinos have mass.
for the discovery and elucidation of water on Mars through the «robotic geologists» of the Mars Exploration Rovers. Squyres and the MER team produced fundamental insights into the geology and climatology of Mars. These have resulted in major advances in our understanding of the potential for life on other planets and of life’s evolution on Earth.
for her vital role in the discovery of the gene responsible for Huntington’s disease. By leading combined efforts in human molecular genetics and neurosciences, Dr. Wexler established a model now used to investigate the genetic basis of inherited diseases.
for their discovery of small RNAs that turn off genes. Their pioneering work initiated a paradigm shift in our perception of the ways genes are regulated, and this insight is making possible major new genetic tools for basic research, and for improving agriculture and human health.
for pioneering research leading to an understanding of the ocean’s influence on climate change. His work led to the successful development of a comprehensive picture of ocean circulation and its role in both past and future environmental change.
for seminal investigations into the origin of nucleic acid structure, which through systematic chemical synthesis have begun to answer the fundamentally important question of why DNA and RNA have the structures they do.
for her pioneering investigations of the quantum properties of an ultracold gas of fermionic atoms, atoms that cannot occupy the same quantum state, and in particular for the creation of the first quantized gas of fermionic atoms.
for creating the first general algorithms for computing and reasoning with uncertain evidence, allowing computers to uncover associations and causal connections hidden within millions of observations. His work has had a profound impact on artificial intelligence and statistics, and on the application of these fields to a wide range of problems in science and engineering.
for pioneering contributions to the development and application of microprocessor controllers in electric power systems. These devices make synchronized measurements to monitor and protect components throughout the power grid, playing a key role in diminishing the frequency and impact of blackouts.
for contributions to robotics and computer vision, specifically the development of active perception and the creation of methods to improve our understanding of medical images.
for his groundbreaking contributions to our mechanistic understanding of enzymes, and for helping to unravel the complexities of the enzymes involved in DNA replication.
for pioneering research leading to our understanding of the unique ecosystems near volcanic vents at the sea floor, the first ever found fueled by chemical energy from the Earth’s interior instead of sunlight.
for his imagination and skill in developing a hard-rock tunnel boring machine and its associated systems, resulting in a safe, economical, and efficient method for constructing tunnels.
for his pioneering chemical research in the field of molecular self-assembly and his invention of rapid, innovative techniques for the inexpensive fabrication of ultra-small devices for practical use.
for his invention and development of the field of fuzzy logic, a mathematical system that captures aspects of the ambiguity of human language and thought, which has solved problems in areas such as artificial intelligence and the automated control of machines.
For their theoretical proposal and experimental realization of the first device that performs elementary computer-logic operations using the quantum properties of individual atoms.
For her fundamental contributions to the theoretical foundation of modern cryptography, which led to techniques that can guarantee secure access to the internet.
For the discovery that alterations to chromosomes can cause cancer, and further research leading to the development of a therapy that now cures 95 % of individuals with chronic myelogenous leukemia.
For the invention and development of the first practical electret microphone, which can inexpensively be made small enough to fit into cellular phones, digital cameras, and other portable devices.
For his seminal contributions to the computer modeling of fluid flow, creating the practice of computational fluid dynamics (CFD) in industry, and paving the path for the widespread application of CFD to the design of objects from airplanes to heart valves.
For uncovering the intricate processes by which cells safely use free radicals, for developing new cancer treatments, and for improving the production of environmentally-friendly biodegradable polymers.
For the development of the first large-scale computational theory of the process by which humans perceive, learn and reason, and its application to computer tutoring systems.
For discovering the underlying principles of mineral formation and alteration by microbes, which are critical to understanding the form, composition, and distribution of minerals in the presence of living organisms.
For his resourcefulness and imagination in creating mechanical devices that broadly benefit society and enable people with disabilities to improve their quality of life and health.
за достижения в синтетической органической химии, в частности, за разработку методов получения сложных веществ, обнаруженных в природе, которые имеют потенциальное применение в области медицины.
За его фундаментальный вклад в наше понимание машинного обучения, которая позволяет компьютерам классифицировать новые данные, основываясь на статистических моделях, полученных из предыдущих примеров, и за его изобретение широко использующихся методов машинного обучения.
For their collective studies of ice cores from around the world which have improved the understanding of Earth’s climate history, including the role of the tropics in global climate change.
For proposing and demonstrating that the diversity and multiplicity of animal life is largely due to the different ways that the same genes are regulated rather than to mutation of the genes themselves.
For groundbreaking contributions to the accurate analysis of composite materials, which have enabled practical engineering designs of lightweight composite structures, commonly used today in aerospace, marine, automotive, and civil infrastructure.
For establishing the cognitive basis of language variation and change through rigorous analysis of linguistic data, and for the study of non-standard dialects with significant social and cultural implications.
For deepening our understanding of the Earth system through studies of the chemistry of geologic processes and their influence on the atmosphere and oceans.
For discovering heritable controls of gene expression that are independent of the DNA sequence information. These mechanisms affect normal development and diseases, such as cancer, and suggest promising new therapies.
For his pioneering work leading to the establishment of the field of chemical ecology. His fundamental studies of how chemicals act as repellents and attractants between organisms pave the way for the use of these chemicals in a variety of biomedical, agricultural, forestry and household applications.
For his many fundamental contributions to the development of the field of molecular astrophysics, which led to a better understanding of interstellar space, including the giant molecular clouds that are the birthplaces of stars and planets.
For outstanding contributions to our understanding of the mechanical behavior of materials in applications ranging from large structures down to the atomic level. This research also showed how deformation of biological cells can be linked to human disease.
for the development of observational techniques and theoretical models providing an improved understanding of the behavior of, and variations in intensity of, the Earth’s magnetic field through geologic time.
for the development of Cryo-Electron Microscopy, for using this technology to investigate the structure of large organic molecules at high resolution, and for discoveries regarding the mechanism of protein synthesis in cells.
За ряд исследований на стыке химии, биологии и медицины, которые вызвали революцию в развитии антибиотиков для лечения различных заболеваний и стали основой для новой отрасли химической биологии.
for many pioneering contributions to discoveries of novel quantum phenomena involving the interaction of atoms with electromagnetic fields and the behavior of atoms at ultra-low temperatures.
for the development of novel methods to model complex engineering systems in structural dynamics, acoustics, fluid mechanics and electromechanical systems.
for the development and realization of the system of Perpendicular Magnetic Recording, which has enabled a dramatic increase in the storage capacity of computer-readable media.
For her contributions to understanding the nature of human language, including the acquisition of spoken and visual language in both typically developing children and those developing in atypical environments; to characterizing critical periods for language learning; and to improving methods for language recovery after damage to the brain.
For pioneering an electromagnetic modeling method for accurate simulation, design, and optimization of radio wave antennas and devices, enabling advances in communications, radar imaging, and target recognition.
For his pioneering research on the role of metal atoms in biology and medicine, including the study of platinum anticancer drugs and of the structure and function of an enzyme that allows microbes to live on natural gas.
For their groundbreaking theoretical contributions leading to the discovery of a new class of materials called topological insulators, and for their prediction of specific compounds exhibiting the novel properties expected of these new materials.
For her contributions to neurobiology that have led to major discoveries elucidating the relationship between genes, neurons, neural circuits, and behavior.
For his pioneering research on the sensitivity of Earth’s climate to increasing carbon dioxide in the atmosphere and his development of global climate models, which have led to fundamental advances in the understanding of climate variability and to methods for predicting future climate change.
For his pioneering contributions to the design of modern microprocessors that achieve higher performance by automatically identifying computer instructions that can be performed simultaneously.
For pioneering work in space communications and the design of digital spread spectrum signals, transmissions that provide security, interference suppression, and precise location for cryptography; missile guidance; defense, space, and cellular communications; radar; sonar; and GPS.
For his conceptualization and demonstration that DNA can be used as a construction material that can spontaneously form sub-microscopic structures of diverse shapes and functions, with potential applications in disease treatment, mechanics, and computation.
For his design and implementation of multiple innovative drug delivery systems, and for his founding work in the field of tissue engineering. As a serial entrepreneur, Dr. Langer established a new paradigm for translating academic ideas into practical products.
For his pioneering studies of coastal sedimentary records, which revealed a history of great earthquakes and tsunamis in the Pacific Northwest over millennia and led to a vastly improved understanding of these hazards globally.
For their seminal contributions to the development of a new polymerization process involving metal catalysts. This powerful process affords unprecedented control of polymer composition and architecture, making possible new materials including improved composites, coatings, dispersants, and biomedical polymers.
For his central role in establishing the fields of cognitive science and cognitive neuroscience, thus increasing understanding of the human mind and brain through the pioneering use of reaction times and brain imaging in rigorous analyses to characterize attention, individual differences in attention, and both typical and atypical attentional development.
For the development of the first visible (red) laser and LED used in displays and lighting, and the use of various alloys in colored light sources, which led to reduced energy consumption worldwide and contributed to the realization of optical data communications as the backbone of the Internet.
For demonstrating the maternal inheritance of mitochondrial DNA (mtDNA) in humans, using mtDNA variation to reconstruct ancient human migrations, identifying the first mtDNA mutation associated with an inherited disease, and showing that mutant mtDNA can profoundly affect the nuclear genome, causing complex diseases, thereby leading the way to therapies for those diseases and the aging process.
For her fundamental contributions to the understanding and exploitation of carbon nanomaterials, such as the spheres known as buckminsterfullerenes, the cylindrical pipes called nanotubes, and the single-atom-thick sheets of carbon known as graphene, and for launching the field of low-dimensional thermoelectricity, the direct conversion of heat to electricity.
For making possible atomic-scale calculations of the properties of materials so detailed that new materials and their mechanical, thermal, electrical, and optical properties can be predicted in agreement with experiments.
For his development of the first practical, rechargeable lithium-ion battery cathode material, lithium cobalt oxide, which has revolutionized lightweight, portable electric power.
For her pioneering use of radiocarbon measurements in forests and soils to assess the flow of carbon between the biosphere and atmosphere, with implications for the understanding of future climate change.
For the realization of high-power terahertz frequency sources operating at room temperature using specially designed and manufactured semiconductor lasers, which enables a new generation of imagers, chemical/biological sensors, and ultra-broadband wireless communication systems.
For his pioneering interdisciplinary contributions in thermodynamics and convection heat transfer that have improved the performance of engineering systems, and for constructal theory, which predicts natural design and its evolution in engineering, scientific, and social systems.
For her pioneering contributions to the long-term quest for a unified theory of the strong, weak, and electromagnetic interactions of fundamental particles.