Калибровка камеры

Калибровка камеры — задача получения внутренних и внешних параметров камеры по имеющимся фотографиям или видео, отснятыми ею.
Калибровка камеры часто используется на начальном этапе решения многих задач компьютерного зрения и в особенности дополненной реальности. Кроме того, калибровка камеры помогает исправлять дисторсию на фотографиях и видео[1].

Параметры модели камеры

Как правило, для представления 2D-координат точки на плоскости используется вектор-столбец вида , а для задания положения 3D-точки в мировых координатах — . Нужно отметить, что эти выражения записаны в расширенной нотации однородных координат, которая является самой распространённой в робототехнике и задачах трансформации твёрдых тел. В частности, в модели камеры-обскуры матрица камеры используется для проецирования точек трёхмерного пространства на плоскость изображения:


где Zc - произвольный масштабный коэффициент

Параметры внутренней калибровки

Матрица внутренней калибровки A содержит 5 значимых параметров. Эти параметры соответствуют фокусному расстоянию, углу наклона пикселей и принципиальной точке (точка пересечения плоскости изображения с оптической осью, совпадающая с центром фотографии. В реальных камерах, как правило, бывает немного смещена из-за оптических искажений). В частности, и соответствуют фокусному расстоянию, измеренному в ширине и высоте пикселя, и  — координатам принципиальной точки, а , где  — угол наклона пикселя[2]. Нелинейные параметры внутренней калибровки, такие как коэффициенты дисторсии, также имеют важное значение, хотя и не могут быть включены в линейную модель, описываемую матрицей внутренней калибровки. Большинство современных алгоритмов калибровки камеры определяет их вместе с параметрами линейной части модели.
Параметры внутренней калибровки относятся только к камере, но не к сцене, поэтому они изменяются только в том случае, когда меняются соответствующие настройки камеры.

Параметры внешней калибровки

(где  — вектор 1 × 3 или матрица 3 × 3 поворота,  — вектор 3 × 1 переноса) — параметры внешней калибровки, определяющие преобразование координат, переводящее координаты точек сцены из мировой системы координат в систему координат, связанную с камерой[2]. Или, что эквивалентно предыдущему определению, параметры внешней калибровки задают положение камеры в мировой системе координат.
Параметры внешней калибровки связаны непосредственно с фотографируемой сценой, поэтому (в отличие от параметров внутренней калибровки) каждой фотографии соответствует свой набор этих параметров.

Модель камеры

При использовании камеры свет из снимаемой сцены фокусируется и захватывается. Этот процесс уменьшает число измерений у данных, получаемых камерой, с трёх до двух (свет из трёхмерной сцены преобразуется в двухмерное изображение). Поэтому каждый пиксель на полученном изображении соответствует лучу света исходной сцены. Во время калибровки камеры происходит поиск соответствия между трёхмерными точками сцены и пикселями изображения.
В случае идеальной камеры-обскуры для задания такого соответствия достаточно одной матрицы проекции. Однако в случае более сложных камер искажения, вносимые линзами, могут сильно повлиять на результат. Таким образом, функция проецирования принимает более сложный вид и часто записывается как последовательность преобразований, например:
, где

  •  — координаты исходной точки сцены;
  •  — координаты пикселя на изображении;
  •  — матрица внешней калибровки (где  — матрица поворота 3 × 3,  — вектор переноса 3 × 1);
  •  — функция применения дисторсии;
  •  — матрица внутренней калибровки.

Алгоритмы калибровки камеры

Существует несколько различных подходов к решению задачи калибровки.

  1. Классический подход — алгоритм Roger Y. Tsai[3]. Он состоит из двух этапов, на первом из которых определяются параметры внешней калибровки, на втором — внутренней калибровки и дисторсии.
  2. «Новая гибкая технология калибровки камеры»[4], которая была разработана Zhengyou Zhang и основана на использовании плоского калибровочного объекта в виде шахматной доски.
  3. Автокалибровка — получение калибровочных данных непосредственно по изображениям, причём в сцене не требуется присутствие специальных калибровочных объектов.

Алгоритм калибровки одной камеры, а также алгоритм стереокалибровки реализован в библиотеке OpenCV.

Автокалибровка

Основные шаги данного метода:

  1. Поиск особых точек на всех изображениях. Для этой цели может использоваться, например, уголковый детектор Харриса.
  2. Поиск точечных соответствий между изображениями. Для этого можно, например, воспользоваться сравнением SIFT-дескрипторов найденных особых точек. В результате на каждом изображении находится набор пикселей, которые соответствуют одним и тем же трёхмерным точкам сцены.
  3. После этого с помощью алгоритма Bundle Adjustment на основе данных о точечных соответствиях производится одновременный поиск и параметров калибровки, и 3D-координат этих особых точек в сцене.


Примечания

  1. Бесплатная программа для устранения дисторсии. Дата обращения: 24 марта 2015. Архивировано 2 апреля 2015 года.
  2. 1 2 Антон Конушин. Геометрические свойства нескольких изображений // Компьютерная графика и мультимедиа (сетевой журнал). — 2006. — № 4(3). Архивировано 23 июля 2009 года.
  3. Алгоритм Roger Y. Tsai. Дата обращения: 17 мая 2010. Архивировано 5 ноября 2015 года.
  4. Z. Zhang, «A flexible new technique for camera calibration'» Архивная копия от 3 декабря 2015 на Wayback Machine, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.11, pages 1330—1334, 2000

Ссылки