Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей[1].
Определение
В теории динамических систем, мера на пространстве называется инвариантной для измеримого отображения , если она совпадает со своим образом [2]. В силу определения, это означает, что
Для обратимых отображений переход к прообразу в (*) может быть заменён на переход к образу: если отображение также измеримо в смысле , то эквивалентным является определение
Однако в общей ситуации изменять определение таким образом нельзя: мера Лебега на окружности инвариантна относительно отображения удвоения , однако мера дуги отлична от меры её образа .
Примеры
- Отображение [3]. Уравнение Перрона — Фробениуса для него имеет вид . Подставляя это выражение в его же правую часть, получаем: . Повторяя эту подстановку раз, получаем: . Эта мера устойчива, то есть произвольная непрерывная мера будет сходится к ней.
- Отображение или , [4]. Существование устойчивой непрерывной инвариантной меры с доказывается аналогично.
- Логистическое отображение , [4]. Производим замену , , получаем , , что можно преобразовать к виду (1). Следовательно, для существует непрерывная постоянная плотность вероятности . Плотность вероятности для следует из неё: .
Примечания
Литература
См. также