Девятая проблема ГильбертаДевятая проблема Гильберта — одна из 23 проблем Гильберта, которые Давид Гильберт высказал в 1900 году на II Международном конгрессе математиков в Париже и которые оказали исключительное влияние на развитие математики в XX веке. Проблема была частично решена Эмилем Артином доказательством закона взаимности Артина для абелевых расширений алгебраических числовых полей[1][2]. Позже в 1948 году И. Р. Шафаревичем был найден самый общий закон взаимности степенных вычетов в полях алгебраических чисел[3][4]. В неабелевом случае, проблема по-прежнему не решена. Формулировка
Источники
См. также |