Гиперболическая группа

Гиперболическая группа — конечно-порождённая группа, граф Кэли которой, как метрическое пространство, является гиперболическим по Громову.

Определение

На конечно-порождённой группе с выбранными образующими есть естественная метрика — словарная. Группа называется гиперболической, если, снабжённая этой метрикой, она оказывается гиперболической как метрическое пространство. Поскольку при замене выбранной системы образующих метрика меняется квазиизометрично, а гиперболичность метрического пространства при этом сохраняется — понятие оказывается не зависящим от выбора системы образующих.

Примеры

  • Поскольку гиперболичность это, в определённом смысле, «сходство» свойств метрического пространства с деревом — свободная группа (граф Кэли которой является деревом) с любым конечным числом образующих гиперболична.
  • Группа PSL(2,Z) гиперболична.
  • Конечная группа гиперболична.

Не примеры:

Свойства

  • Гиперболичность сохраняется при переходе к подгруппе конечного индекса.
  • Любая гиперболическая группа является конечно-представленной: задаётся конечным числом образующих и конечным числом соотношений. (Как следствие, гиперболических групп — в отличие от всех групп вообще — лишь счётное число.)
  • Гиперболичность равносильна линейному изопериметрическому неравенству: тривиальное слово, записанное как произведение N образующих, представляется как произведение CN сопряжённых к базисным соотношениям (с определённым контролем на длину сопрягающих произведений).

Примечания

  1. Bridson, Haefliger, 1999, Chapter III.Γ, Corollary 3.10.
  2. Ghys, de la Harpe, 1990, Ch. 8, Th. 37.

Литература