Вольфрамат кадмия
Вольфрама́т ка́дмия, вольфра̀мовоки́слый ка́дмий — кадмиевая соль вольфрамовой кислоты с химической формулой CdWO4 (обозначается также CWO). Тяжёлый, нерастворимый в воде и неорганических кислотах, химически инертный кристаллический порошок. ПолучениеСинтезируется из смеси оксида вольфрама(VI) WO3 и оксида кадмия CdO при сильном нагреве: Ввиду летучести оксида кадмия, этот компонент берётся в количестве выше стехиометрического. Может быть получен также как осадок из водных растворов солей кадмия(II) и растворимых вольфраматов[1][2]: Физические свойстваТехнический вольфрамат кадмия имеет жёлтый или жёлто-зелёный цвет, однако чрезвычайно чистые монокристаллы CdWO4 прозрачны и бесцветны. Плотность 7,9—8,0 г/см³, температура плавления 1325 °C, коэффициент преломления 2,2—2,3 (проявляет двулучепреломление). Твёрдость по Моосу 4—4,5, гигроскопичность отсутствует. Объёмный модуль упругости при н.у. равен 123 ГПа[3]. Кристаллы при нормальных условиях имеют структуру вольфрамита[4]. Кристаллы моноклинной сингонии, пространственная группа P2/c, параметры ячейки a = 0,50289 нм, b = 0,58596 нм, c = 0,50715 нм, β = 91,519°, Z = 2, d = 8,0087 г/см3, объём ячейки 0,14939 нм3[4]. В различных опубликованных измерениях были определены и несколько отличающиеся параметры решётки, дающие объём элементарной ячейки от 0,14884 до 0,14969 нм3 и соответственно кристаллографическую плотность в диапазоне 7,9926…8,038 г/см3[4]. При повышении давления до 19,5 ГПа испытывает фазовый переход к структуре поствольфрамита P21/c с удвоением объёма элементарной ячейки[3]. Разработаны методы выращивания больших (до 12 кг, ИНХ СОРАН) монокристаллов CWO. В НГУ были получены кристаллы массой до 20 кг[5]. ИспользованиеВольфрамат кадмия люминесцирует под воздействием ионизирующего излучения; это свойство было обнаружено ещё в 1940-х годах[6] и вскоре стало использоваться для создания детекторов излучения. Монокристаллы вольфрамата кадмия используются в качестве сцинтилляторов для детектирования ионизирующего излучения в ядерной физике, физике элементарных частиц, ядерной медицине (в частности, в позитронно-эмиссионной томографии). Спектр люминесценции CWO лежит в диапазоне 380—600 нм (при облучении гамма-квантами) и 380—680 нм (при облучении альфа-частицами)[7], с максимумом на 480 нм. Благодаря большой плотности и высокому эффективному заряду ядра (Z=64)[8] CdWO4 хорошо поглощает гамма-кванты и рентген. Поэтому большие объёмы вольфрамата кадмия потребляются производителями рентгеновских систем безопасности и таможенного досмотра для просвета крупногабаритных грузов (контейнеры, автомобили, корабли, самолёты). Высокое сечение радиоактивного захвата тепловых нейтронов одним из природных изотопов кадмия, 113Cd, позволяет использовать CdWO4 в качестве детектора этих частиц (гамма-кванты, излучаемые кадмием-113 при захвате нейтрона, создают в кристалле CWO сцинтилляционную вспышку, которая детектируется соответствующим фотоприёмником). Световыход сцинтиллятора составляет около 40 % от световыхода NaI(Tl) и почти не зависит от температуры в диапазоне от 0 до 100 °C, что способствует использованию CdWO4 для гамма-каротажа в скважинах при высоких температурах окружающей среды. Высокая радиационная чистота вольфрамата кадмия позволяет использовать его для сверхнизкофоновых ядерных детекторов, применяемых для детектирования гипотетических частиц тёмной материи, редких ядерных распадов и т. д. (так, чрезвычайно редкая природная альфа-радиоактивность вольфрама (альфа-распад 180W) была обнаружена[9] в 2003 году с использованием такого детектора). Применение вольфрамата кадмия как сцинтиллятора осложняется относительно большим временем высвечивания (12−15 мкс)[10], что не позволяет использовать его в детекторах с высокой скоростью счёта. Проявляемая вольфраматом кадмия различная зависимость высвечивания от времени для альфа- и бета-частиц позволяет эффективно разделять частицы по типу[11]. См. такжеПримечания
Литература
|