Universo de Herbrand
Na lógica matemática, dada uma linguagem formal com um conjunto de símbolos (símbolos de constantes e símbolos funcionais), o universo de Herbrand define recursivamente o conjunto de todos os termos que podem ser compostos aplicando uma composição funcional a partir de símbolos básicos. Foi assim denominada em homenagem a Jacques Herbrand. Dada uma linguagem de primeira ordem L, seu universo de Herbrand é definido pelo conjunto de todas as cláusulas básicas que podem ser construídas a partir dos símbolos de L. Levando em conta a definição de termo básico, podemos observar que os símbolos que aparecem em um universo de Herbrand são funtores e constantes de L. Considere uma fórmula da lógica de primeira ordem na forma skolemizada
Então o universo de Herbrand de é definido pelas seguintes regras. 1. Todas as constantes de pertencem a . Se não existem constantes em , então contém uma constante arbitrária . 2. Se , e uma função -ária ocorre em , então . As cláusulas (disjunções de literais) obtidas daquelas de substituindo todas as variáveis por elementos do universo de Herbrand são chamadas cláusulas básicas, com definições similares para literais básicos e átomos básicos. O conjunto de todos os átomos básicos que pode ser formados a partir de símbolos predicados de e termos de é chamado de Base de Herbrand. A geração consecutiva de elementos do universo de Herbrand e a verificação de insatisfatibilidade de elementos gerados podem ser diretamente implementadas em um programa de computador. Tendo em vista a completude da lógica de primeira ordem, esse programa é basicamente uma ferramenta para a demonstração automática de teoremas. Evidentemente, essa busca exaustiva é muito lenta para aplicações práticas. Esse programa irá terminar a execução para todas as fórmulas insatisfatíveis e não terminará para fórmulas satisfatíveis, que basicamente mostra que o conjunto das fórmulas insatisfatíveis é recursivamente enumerável. Dado que a demonstrabilidade (ou, equivalentemente, a insatisfatibilidade) na lógica de primeira-ordem é recursivamente indecidível, esse conjunto não é recursivo. Exemplo1. Seja Desde que não existe constante em , seja então . Assim 2. Seja Desde que não exista constante em , seja então . Desde que não exista símbolo funcional em , Ver tambémReferências |