O Teorema do ponto fixo de Schauder é uma generalização do teorema do ponto fixo de Brouwer. Enquanto o teorema de Brouwer se aplica a espaços euclidianos, o teorema de Schauder vale em espaços de Banach. Este resultado foi conjecturado e provado em casos especiais [como os espaços de Banach] por Julius Schauder, em 1930.
Enunciado
Seja um espaço de Banach, um fechado, limitado e convexo não vazio e um operador compacto. Então admite um ponto fixo , ou seja:
Versão Alternativa
Seja um espaço de Banach, um compacto e convexo e uma função contínua. Então admite um ponto fixo , ou seja:
Observações
- Quando tem dimensão finita, então este teorema é idêntico ao teorema do ponto fixo de Brouwer, pois, então, um conjunto é compacto se e somente se for limitado e fechado.
- A generalização deste resultado é o Teorema do Ponto-Fixo de Schauder-Tychonoff, no qual o russo Andrei Tychonoff foi o primeiro a provar este caso generalizado em 1934 - Enunciado: o teorema estabelece que uma função contínua definida num subconjunto compacto e convexo de um espaço vetorial topológico localmente convexo possui um ponto fixo.
- Andrey Markov usou este "teorema de Schauder" para provar o seu teorema do ponto fixo, em 1936. E depois, já em 1938, o matemático nipo-americano Shizuo Kakutani generalizou o resultado de Markov e, assim, o resultado geral é denominado "Teorema do Ponto Fixo de Markov-Kakutani".
Referências
- Dugundji, James. Topology. 1aedição. Boston: Allyn and Bacon, 1965
- Evans, C. Lawrence. Partial Differential Equations. 3aedição. Providence, RI: AMS, 2002
- Zeidler, Eberhard. Nonlinear Functional Analysis and its Applications.vol.I.Fixed-Point Theorems. 1aedição. Springer-Verlag New York Inc., 1986