Provas verificáveis probabilisticamenteNa teoria da complexidade computacional, uma prova verificável probabilisticamente (PCP) é um tipo de prova que pode ser verificada por um algoritmo aleatório usando uma quantidade limitada de aleatoriedade e ler um número limitado de bits da prova. O algoritmo é então obrigado a aceitar as provas corretas e rejeitar as provas incorretas com a probabilidade muito alta. Uma prova padrão (ou Certificada), como a usada na definição base do verificador de complexidade da classe NP, também satisfaz os requisitos, uma vez que o procedimento de verificação deterministicamente lê a prova toda, sempre aceita as provas corretas e rejeita as incorretas. No entanto, o que os torna interessante é a existência de provas verificáveis probabilisticamente que podem ser verificadas por ler apenas alguns bits da prova usando essencialmente a aleatoriedade. Provas verificáveis probabilisticamente dão origem a muitas classes de complexidade dependendo do número de consultas necessárias e a quantidade de aleatoriedade utilizada. A classe PCP [r (n), q (n)] refere-se ao conjunto de problemas de decisão que têm provas verificáveis probabilisticamente que podem ser verificadas em tempo polinomial usando essencialmente, no máximo, r (n) bits aleatórios e pela leitura de no máximo q (n ) bits da prova . Exceto quando especificado ao contrário, as provas corretas devem ser sempre aceitas, e as provas incorretas devem ser rejeitadas com probabilidade maior que 1/2. O teorema PCP, melhor resultado na teoria da complexidade computacional, afirma que PCP [O (log n), O (1)] = NP. A complexidade da classe PCP é a classe de decisão de problemas que têm provas probabilisticamente verificáveis com a completude 1, rigidez α <1, complexidade aleatória O (log n) e complexidade da consulta O (1). DefiniçãoO sistema de provas probabilisticamente verificáveis com completude c(n) e rigidez s(n) além do alfabeto Σ para um problema de decisão L, onde 0 ≤ s(n) ≤ c(n) ≤ 1, é um oráculo V (o verificador) que, sobre a entrada x e oráculo, acessa uma string π ∈ Σ* (a prova), satisfaz as seguintes propriedades:
A complexidade randômica r(n) do verificador é o número máximo de bits aleatórios que V usa sobre tudo x de tamanho n. Acomplexidade de consulta q(n)do verificador o número máximo de consultas que V faz a π sobre todo x de comprimento n. O verificador é dito ser não-adaptável se ele faz todas as suas consultas antes de receber qualquer uma das respostas às perguntas anteriores. A complexidade da classe PCPc(n), s(n)[r(n), q(n)] é a classe de todas as decisões de problemas tendo o sistema de provas verificáveis probabilisticamente sobre o alfabeto de completude c(n) e rigidez s(n), onde o verificados é não adaptável, roda em tempo polinomial, e tem complexidade randômica r(n) e complexidade de consulta q(n). A notação abreviada PCP [ r ( n), q ( n)] as vezes é usado para PCP 1, ½ [ r ( n), q ( n)]. A complexidade da classe PCP1, ½[O(logn), O(1)]. História e significadoA teoria de provas verificáveis probabilisticamente estuda o poder de sistemas de provas probabilisticamente verificáveis sob várias restrições dos parâmetros (integridade, solidez, complexidade da aleatoriedade, a complexidade da consulta e tamanho do alfabeto.). Existem aplicações para a complexidade computacional (em especial, dificuldade de aproximação) e criptografia. A definição de uma prova probabilisticamente verificável foi explicitamente introduzida por Arora e Safra em 1992, apesar de suas propriedades terem sido estudadas anteriormente. Em 1990 Babai, Fortnow e Lund provaram que PCP[P(n), P(n)] = NEXP, fornecendo a primeira equivalência não trivial entre provas normais (NEXP) e provas probabilisticamente verificáveis. O teorema PCP provado em 1992 afirma quePCP[O(log n),O(1)] = NP. A teoria da dificuldade de aproximação exige uma compreensão detalhada do papel da completude, rigidez, tamanho do alfabeto e complexidade da consulta em provas verificáveis probabilisticamente. PropriedadesPara configurações extremas dos parâmetros, a definição de provas probabilisticamente verificáveis é facilmente vista como sendo equivalente ao padrão de classes de complexidade. Por exemplo:
O teorema PCP e MIP = NEXP pode ser caracterizado pelo seguinte:
Sabendo também que PCP[r(n), q(n)] ⊆ NTIME(2O(r(n))q(n)+P(n)), se o verificador é forçado a ser não-adaptável. Para verificadores adaptáveis, PCP[r(n), q(n)] ⊆ NTIME(2O(r(n)+q(n))+P(n)). Porém, se NP ⊆ PCP[o(log n),o(log n)] então P = NP. Bibliografia
Ligação externa
|