Os centríolos são normalmente compostos por nove conjuntos de tripletos curtos de microtúbulos, dispostos em um cilindro. Os desvios dessa estrutura aparecem em caranguejos e embriões de Drosophila melanogaster, com nove dupletos, e células de esperma e embriões iniciais de Caenorhabditis elegans, com nove dupletos.[5][6] Outras proteínas incluem centrina, cenexina e tektina.[7]
A principal função dos centríolos é produzir tanto cílios durante a interfase como o áster e o fuso durante a divisão celular.
História
O centrossomo foi descoberto conjuntamente por Walther Flemming em 1875[8][9] e Edouard Van Beneden em 1876.[9][10] Edouard Van Beneden fez a primeira observação de centrossomos como compostos de dois centríolos ortogonais em 1883.[11]Theodor Boveri introduziu o termo "centrossomo" em 1888[9][12][13][14] e o termo "centríolo" em 1895.[9][15] O corpo basal foi nomeado por Theodor Wilhelm Engelmann em 1880.[9][16] O padrão de duplicação do centríolo foi desenvolvido independentemente por Étienne de Harven e Joseph G. Gall em 1950.[17][18]
Papel na divisão celular
Os centríolos estão envolvidos na organização do fuso mitótico e na conclusão da citocinese.[19] Anteriormente, acreditava-se que os centríolos eram necessários para a formação de um fuso mitótico em células animais. No entanto, experimentos mais recentes demonstraram que as células cujos centríolos foram removidos por meio de ablação a laser ainda podem progredir pela fase G1 da interfase antes que os centríolos possam ser sintetizados mais tarde de novo.[20] Além disso, as moscas mutantes sem centríolos se desenvolvem normalmente, embora as células das moscas adultas não tenham flagelos e cílios e, como resultado, elas morrem logo após o nascimento.[21] Os centríolos podem se autorreplicar durante a divisão celular.
Organização celular
Os centríolos são uma parte muito importante dos centrossomos, que estão envolvidos na organização dos microtúbulos no citoplasma.[22][23] A posição do centríolo determina a posição do núcleo e desempenha um papel crucial no arranjo espacial da célula. Buehler sugeriu que o centríolo pode formar um "olho" primitivo direccional, sensível a certos comprimentos de onda no espectro infra vermelho. Ele também demonstrou que as células são capazes de reagir a presença umas das outras a uma distância e, mesmo quando separadas por uma película de vidro.[24]
Fertilidade
Os centríolos do espermatozoide são importantes para duas funções:[25] (1) para formar o flagelo do espermatozoide e o movimento do espermatozoide e (2) para o desenvolvimento do embrião após a fecundação. O espermatozoide fornece o centríolo que cria o centrossomo e o sistema de microtúbulos do zigoto.[26]
Ciliogênese
Nos flagelados e ciliados, a posição do flagelo ou cílio é determinada pelo centríolo-mãe, que se torna o corpo basal. A incapacidade das células de usar os centríolos para criar flagelos e cílios funcionais tem sido associada a várias doenças genéticas e de desenvolvimento. Em particular, a incapacidade dos centríolos de migrar adequadamente antes da montagem ciliar foi recentemente associada à síndrome de Meckel-Gruber.[27]
Desenvolvimento animal
A orientação adequada dos cílios por meio do posicionamento do centríolo em direção à parte posterior das células do nó embrionário é fundamental para estabelecer a assimetria esquerda-direita durante o desenvolvimento dos mamíferos.[28]
Duplicação do centríolo
Antes da replicação do DNA, nas fases G0 e G1 as células contêm dois centríolos, um centríolo mãe mais velho e um centríolo filha mais novo. Durante a divisão celular, um novo centríolo cresce na extremidade proximal dos centríolos mãe e filho. Após a duplicação, os dois pares de centríolos (o centríolo recém-montado é agora um centríolo-filho em cada par) permanecerão ligados um ao outro ortogonalmente até a mitose. Nesse momento, os centríolos mãe e filho se separam, dependendo de uma enzima chamada separase.[29]
Os dois centríolos no centrossomo estão ligados um ao outro por proteínas não identificadas. O centríolo-mãe tem apêndices radiantes na extremidade distal de seu eixo longo e está ligado à sua filha na extremidade proximal. Cada célula filha formada após a divisão celular herdará um desses pares. Os centríolos começam a se duplicar quando o DNA se replica.[19]
Origem
O último ancestral comum de todos os eucariotos era uma célula ciliada com centríolos.[30] Algumas linhagens de eucariotos, como as plantas terrestres, não têm centríolos, exceto em seus gametas masculinos móveis. Os centríolos estão completamente ausentes de todas as células de coníferas e plantas com flores, que não têm gametas ciliados ou flagelados.[31] Não está claro se o último ancestral comum tinha um[32] ou dois cílios.[33] Genes importantes, como as centrinas necessárias para o crescimento do centríolo, são encontrados apenas em eucariotos, e não em bactérias ou arqueas.[32]
Etimologia e pronúncia
A palavra centríolo usa as formas combinadas de centri- e -olo, resultando em "pequena parte central", que descreve a localização típica de um centríolo próximo ao centro da célula.
Centríolos atípicos
Os centríolos típicos são formados por 9 tripletos de microtúbulos organizados com simetria radial.[34] Os centríolos podem variar o número de microtúbulos e podem ser formados por 9 duplos de microtúbulos (como em D. melanogaster) ou 9 simples de microtúbulos como em C. elegans. Os centríolos atípicos são centríolos que não têm microtúbulos, como o centríolo proximal encontrado no espermatozoide de D. melanogaster,[35] ou que têm microtúbulos sem simetria radial, como no centríolo distal do espermatozoide humano.[36] Os centríolos atípicos podem ter evoluído pelo menos oito vezes independentemente durante a evolução dos vertebrados e podem evoluir no espermatozoide após a evolução da fertilização interna.[37]
Não ficou claro por que o centríolo se tornou atípico até recentemente. O centríolo distal atípico forma um complexo basal dinâmico (DBC) que, juntamente com outras estruturas no colo do espermatozoide, facilita uma cascata de deslizamento interno, acoplando o batimento da cauda com a dobra da cabeça. As propriedades do centríolo distal atípico sugerem que ele evoluiu para um sistema de transmissão que acopla os motores da cauda do espermatozoide a todo o espermatozoide, melhorando assim a sua função.[38]
↑Leidel, S.; Delattre, M.; Cerutti, L.; Baumer, K.; Gönczy, P (2005). «SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells». Nature Cell Biology. 7 (2): 115–25. PMID15665853. doi:10.1038/ncb1220
↑Rieder, C. L.; Faruki, S.; Khodjakov, A. (outubro de 2001). «The centrosome in vertebrates: more than a microtubule-organizing center». Trends in Cell Biology. 11 (10): 413–419. ISSN0962-8924. PMID11567874. doi:10.1016/S0962-8924(01)02085-2
↑Flemming, W. (1875). Studien uber die Entwicklungsgeschichte der Najaden. Sitzungsgeber. Akad. Wiss. Wien 71, 81–147
↑ abcdeBloodgood RA. From central to rudimentary to primary: the history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol. 2009;94:3-52. doi: 10.1016/S0091-679X(08)94001-2. Epub 2009 Dec 23. PMID 20362083.
↑Van Beneden, E. (1876). Contribution a l’histoire de la vesiculaire germinative et du premier noyau embryonnaire. Bull. Acad. R. Belg (2me series) 42, 35–97.
↑Boveri, T. (1888). Zellen-Studien II. Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Jena. Z. Naturwiss. 22, 685–882.
↑Boveri, T. Ueber das Verhalten der Centrosomen bei der Befruchtung des Seeigel-Eies nebst allgemeinen Bemerkungen über Centrosomen und Verwandtes. Verh. d. Phys.-Med. Ges. zu Würzburg, N. F., Bd. XXIX, 1895. link.
↑Boveri, T. (1901). Zellen-Studien: Uber die Natur der Centrosomen. IV. Fischer, Jena. link.
↑Boveri, T. (1895). Ueber die Befruchtungs und Entwickelungsfahigkeit kernloser Seeigeleier und uber die Moglichkeit ihrer Bastardierung. Arch. Entwicklungsmech. Org. (Wilhelm Roux) 2, 394–443.
↑Engelmann, T. W. (1880). Zur Anatomie und Physiologie der Flimmerzellen. Pflugers Arch. 23, 505–535.
↑Vorobjev, I. A.; Nadezhdina, E. S. (1987). The Centrosome and Its Role in the Organization of Microtubules. Col: International Review of Cytology. 106. [S.l.: s.n.] pp. 227–293. ISBN978-0-12-364506-7. PMID3294718. doi:10.1016/S0074-7696(08)61714-3. See also de Harven's own recollections of this work: de Harven, Etienne (1994). «Early observations of centrioles and mitotic spindle fibers by transmission electron microscopy». Biology of the Cell. 80 (2–3): 107–109. PMID8087058. doi:10.1111/j.1768-322X.1994.tb00916.x
↑ abSalisbury, JL; Suino, KM; Busby, R; Springett, M (2002). «Centrin-2 is required for centriole duplication in mammalian cells». Current Biology. 12 (15): 1287–92. PMID12176356. doi:10.1016/S0960-9822(02)01019-9
↑Albrecht-Buehler, G. Changes of cell behavior by near-infrared signals. Cell Motiltiy and the Cytoskeleton 32:299-304 (1995)
↑Avidor-Reiss, T., Khire, A., Fishman, E. L., & Jo, K. H. (2015). Atypical centrioles during sexual reproduction. Frontiers in cell and developmental biology, 3, 21. Chicago
↑Hewitson, Laura; Schatten, Gerald P. (2003). «The biology of fertilization in humans». In: Patrizio, Pasquale; et al. A color atlas for human assisted reproduction: laboratory and clinical insights. [S.l.]: Lippincott Williams & Wilkins. p. 3. ISBN978-0-7817-3769-2. Consultado em 9 de novembro de 2013
↑Karp, Gerald (2008). Cell and Molecular Biology. Concepts and Experiments (em inglês) 5ª ed. New Jersey: John Wiley. p. 584-585. ISBN978-0-470-04217-5
↑Turner, K., N. Solanki, H.O. Salouha, and T. Avidor-Reiss. 2022. Atypical Centriolar Composition Correlates with Internal Fertilization in Fish. Cells. 11:758, https://www.mdpi.com/2073-4409/11/5/758
↑Khanal, S., M.R. Leung, A. Royfman, E.L. Fishman, B. Saltzman, H. Bloomfield-Gadelha, T. Zeev-Ben-Mordehai, and T. Avidor-Reiss. 2021. A dynamic basal complex modulates mammalian sperm movement. Nat Commun. 12:3808.. https://doi.org/10.1038/s41467-021-24011-0