Om-ceva-driehoek

A'B'C' is de om-ceva-driehoek van P.

De om-ceva-driehoek is een begrip uit de driehoeksmeetkunde. Neem voor P een punt in het vlak van een gegeven driehoek ΔABC, dat geen hoekpunt van ΔABC is, dan is de om-ceva-driehoek ΔA'B'C' van ΔABC de driehoek, zodat A' op het verlengde van AP en op de omgeschreven cirkel van ΔABC ligt, B' op het verlengde van BP en op de omgeschreven cirkel en C' op het verlengde van CP ligt en op de omgeschreven cirkel.

De om-ceva-driehoek is symmetrisch, ΔABC is de om-ceva-driehoek van P in ΔA'B'C'.

Eigenschappen

Barycentrische coördinaten

Zijn (x:y:z) de barycentrische coördinaten van P, en a, b en c de lengtes van de zijden BC, CA en AB, dan zijn de barycentrische coördinaten van A', B' en C'

Literatuur

  • W Gallatly, Modern Geometry Of The Triangle, 1913. Londen: Hodgson, herdrukt in 2007
  • C Kimberling, Triangle Centers and Central Triangles, 1988. voor Congressus Numerantium, 129 blz 1-295

Andere ceva-driehoeken