This paper presents the implementation and evaluation of different convolutional neural network architectures focused on food segmentation. To perform this task, it is proposed the recognition of 6 categories, among which are the main food groups (protein, grains, fruit, vegetables) and two additional groups, rice and drink or juice. In addition, to make the recognition more complex, it is decided to test the networks with food dishes already started, i.e. during different moments, from its serving to its finishing, in order to verify the capability to see when there is no more food on the plate. Finally, a comparison is made between the two best resulting networks, a SegNet with architecture VGG-16 and a network proposed in this work, called Residual Segmentation Convolutional Neural Network or ResSeg, with which accuracies greater than 90% and interception-over-union greater than 75% were obtained. This demonstrates the ability, not only of SegNet architectures for food segmentation, but the use of residual layers to improve the contour of the segmentation and segmentation of complex distribution or initiated of food dishes, opening the field of application of this type of networks to be implemented in feeding assistants or in automated restaurants, including also for dietary control for the amount of food consumed.
Published by | Institute of Advanced Engineering and Science |
Journal Name | International Journal of Electrical and Computer Engineering (IJECE) |
Contact Phone | - |
Contact Name | Tole Sutikno |
Contact Email | ijece@iaesjournal.com |
Location | Kota yogyakarta, Daerah istimewa yogyakarta INDONESIA |
Website | IJECE| http://ijece.iaescore.com/index.php/IJECE| |
ISSN | ISSN : 20888708, EISSN : -, DOI : -, |
Core Subject | Science, Engineering, |
Meta Subject | Computer Science & IT, Electrical & Electronics Engineering, |
Meta Desc | International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. |
Penulis | Pinzón-Arenas, Javier O. , Jiménez-Moreno, Robinson , Pachón-Suescún, César G. |
Publisher Article | Institute of Advanced Engineering and Science |
Subtitle Article | International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 1: February 2020 |
Scholar Google | http://scholar.google.com/scholar?q=%2Bintitle%3A&… |
View Article | http://ijece.iaescore.com/inde… |
DOI | https://doi.org/10.11591/ijece.v10i… |
DOI Number | DOI: 10.11591/ijece.v10i1.pp1017-1026 |
Download Article [1] | http://ijece.iaescore.com/index.php/IJEC… |
Download Article [2] | http://download.garuda.ristekdikti.go.id… |
Informasi yang terkait dengan ResSeg: Residual encoder decoder convolutional neural network for food segmentation