Access to technology in learning is important and is essential in facilitating students? use of technology in their learning process. The aim of this study was to enhance students? selfconfidence with Pythagoras? Theorem by using problem-based learning (PBL) and technology. The technology used was GeoGebra. This study was conducted at a state junior secondary schools in Indonesia. The researcher employed an action research methodology. Twenty-four second year students (12 boys and 12 girls) from the juniorsecondary school participated in this study. The sampling technique used was purposive random sampling. This study used a pre-experimental design with no control group with both qualitative and quantitative data collected and analysed. There were two cycles in this action research. The investigation showed that the integration of problem-based learningand technology has positive impacts on sample students? self-confidence. The students? mean score, which was 80.54 (average self-confidence) on the pre-test, showed an improvement in the post-test with 106.13 (high self-confidence). In addition, the researcher conducted interviews of three students. The result showed that the learning had as positive impact on the students? self-confidence. As part of 21st century society, students need tosurvive in the workplace and teachers can play their role in accomplishing this in the teaching and learning process. While the researcher cannot make generalisations due to the nature of the sample, nevertheless the integration of problem-based learning and technology in the mathematics learning process will be of interest to teachers and educators looking to improve their students? self-confidence.

Published by SEAMEO REGIONAL CENTRE FOR QITEP IN MATHEMATICS
Journal Name Southeast Asian Mathematics Education Journal
Contact Phone+6285643763865
Contact Name Wahid Yunianto
Contact Email yunianto_wahid@yahoo.co.id
Location Kab. sleman, Daerah istimewa yogyakarta INDONESIA
Website seamej| http://www.journal.qitepinmath.org/index.php/seamej|
ISSN ISSN : 20894716, EISSN : 27218546, DOI : https://doi.org/10.46517/seamej,
Core Subject Education,
Meta Subject Mathematics,
Meta DescThe Journal invites original research articles and not simultaneously submitted to another journal or conference. The whole spectrum of research in mathematics education are welcome, which includes, but is not limited to the following topics: Realistic Mathematics Education Realistic Mathematics Education (RME) is a teaching and learning theory in mathematics education that was first introduced and developed by Freudenthal. There are two important points in RME; mathematics must be connected to reality and mathematics as a human activity. RME is implemented three principles, they are: (1) guided reinvention and progressive mathematizing, (2) didactical phenomenology, and (3) self-developed model. Furthermore, the practice of RME also has its own characteristics, they are: (1) phenomenological exploration or the use of contexts, (2) the use of models or bridging by vertical instruments, (3) the use of students own productions and constructions or students contribution, (4) the interactive character of the teaching process or interactivity, and (5) the intertwining of various learning strands. A paper is eligible to be included in this topic if the paper accommodates these three principles and these five characteristics. Joyful Learning in Mathematics Education The main goal of mathematics education in school is the mathematization of the child’s thought process through joyful learning. Learning should be something joyful because it is a perpetual growth process and self-reflection. Mathematics teachers are expected to develop ideas to motivate students by joyful activities, such as discovering, exploring, constructing, designing, setting strategy, and solving problems that are wrapped in mathematics games, puzzles, and hands-on activities. Integrating ICT in Mathematics Education The advance of information and communication technology (ICT) has been the concern of all human life, including in education. When all students use technology, education must be the first one to utilize it for the sake of effectiveness and attractiveness. The researches (ideas of research) on related topics could be traced to the works of Paul Drijvers, Willem J. Pelgrum, Tjeerd Plomp, Jean-Baptiste Lagrange, Michèle Artigue, Colette Laborde, Luc Trouche, and published books in Springer or other publishers. STEM Education Science, Technology, Engineering, and Mathematics (STEM) has been major topic of discussion in the field of education, due to the most esteemed fields to respond to the demand of 21st century. STEM education will be an important knowledge for teachers to educate future high-quality workforce. STEM education can be implemented in any level of education. The main principle of STEM education is Engineering Design Process (EDP). This principle consists of cyclic process: (1) Identifying problem, (2) Researching the problem, (3) Developing possible solutions, (4) Selecting promising solution, (5) Building the prototype, (6) Evaluating the prototype, (7) Redesigning. The idea research of STEM Education can be explored in Breiner, Harkness, Johnson, and Koehler; Sanders; and Bybee. Lesson Study Lesson Study is a well-known approach originated from Japan for action research in classroom by teachers. It is an effective model for teachers to join their activities to improve their teaching. This approach emphasizes the improvement of students’ mathematical thinking which involves three steps namely Plan-Do-See. The research (ideas of research) on related topics could be traced to the works of Fernandez and Yoshida, Lewis and Wang-Iverson and Yoshida. Teacher-made Mathematics Teaching Aids Students at times struggle with mathematics due to the abstract concepts involved. To help address this issue teachers can use physical objects, such as teaching aids, to make the concepts more relatable and understandable. It also provides opportunity for students to understand and internalize basic mathematial concepts through concrete objects and situations. A paper is eligible for this topic if it comprehensively explains the mathematics teaching aid made by the teachers and the learning opportunities offered to the students. Clinical Supervision Having strong educational leadership is known to be a major factor in improving student learning. By providing vision and development opportunities, educational leaders can help facilitate the conditions necessary for teachers to perform at their best. A good supervision involves activities that aids, directs and informs teachers of what should be done or have been done and not merely finding faults in the teachers’ teaching. A paper is eligible for inclusion in the clinical supervision if it provides a comprehensive description and analysis of every stage in the supervision process Differentiated Instruction Differentiated instruction is a teaching theory based on the premise that instructional approaches should vary and be adapted in relation to individual and diverse students in classrooms. Many classes consisting of students with diverse learning abilities require a teacher capable of designing teaching strategies that accommodate all learning styles. Therefore, the scope of differentiated instruction is an important part of the focus and scope of the journal. Teacher Professional Development Teacher professional development is defined as activities that develop an teacher’s skills, knowledge, expertise and other characteristics. The definition recognizes that development can be provided in many ways, ranging from the formal to the informal. It can be made available through external expertise in the form of courses, workshops or formal qualification programs, through collaboration between schools or teachers across schools (e.g. observational visits to other schools or teacher networks) or within the schools in which teachers work. In this last case, development can be provided through coaching/mentoring, collaborative planning and teaching, and the sharing of good practices. Classroom Action Research Classroom action research is a reflective process which helps teachers to explore and examine aspects of teaching and learning and to take action to change and improve. It begins with a question or questions about classroom experiences, issues, or challenges. Generally, classroom action research is consisting of 4 steps, namely, planning, action, observation, and reflection. Authors could submit their work, with a comprehensive description and analysis of every step.
PenulisLaksmiwati, Pasttita Ayu
Publisher ArticleSEAMEO Regional Centre for QITEP in Mathematics
Subtitle Article Southeast Asian Mathematics Education Journal Vol 8, No 1 (2018)
Scholar Googlehttp://scholar.google.com/scholar?q=%2Bintitle%3A&…
View Articlehttp://www.journal.qitepinmath…
DOIhttps://doi.org/10.46517/seamej.v8i…
DOI Number DOI: 10.46517/seamej.v8i1.60
Download Article [1] http://www.journal.qitepinmath.org/index…
Download Article [2] http://download.garuda.ristekdikti.go.id…