電流電圧特性
電流電圧特性(でんりゅうでんあつとくせい、英: Current–voltage characteristic)とは、ある電気回路、回路素子、物質などに電流を流した際に生じる電圧・電位差を示す図やグラフを指す。I–V曲線(I–V curve) とも。 電子工学電子工学においては、ある電子部品を流れる直流電流と、端子間に生じる直流電圧との関係をその素子の電流電圧特性と呼ぶ。技術者はこの図を用いて素子の基本パラメータを決定し、電気回路中でのその素子のふるまいをモデル化する。電流と電圧を表わす標準的な変数名を用いてI–V曲線と呼ばれることもある。 真空管やトランジスタなど、2つ以上の端子を持つ電子部品の場合、ある2つの端子間の電流電圧特性は別の端子に流れる電流やかかる電圧に依存することがある。このような場合には、電流電圧特性を表わすグラフは別の端子の様々な条件に対応する複数の曲線からなる複雑なものとなる。 例として、右図にMOSFETのオーバードライブ電圧(VGS−Vth)をパラメータとする一群のI–V曲線を示す。 最も単純なI–V曲線を持つのは抵抗器で、オームの法則によりそのI–V曲線は原点を通り、コンダクタンス(電気抵抗の逆数)を傾きとする直線となる。 電子部品のI–V曲線はカーブトレーサーと呼ばれる装置によって測定することができる。I–V曲線から導出される伝統的なパラメータとして、相互コンダクタンスやアーリー電圧が挙げられる。 I–V曲線の種類電子部品のI–V曲線の形からは、その部品の動作について多くの情報が得られる。さまざまな素子のI–V曲線を分類する軸として、以下のようなものが挙げられる。
これに対して、第二および第四象限を通るI–V曲線は能動素子であり、電力を供給する。例として電池や発電機が挙げられる。素子がI–V平面の第二および第四象限にあたる動作条件にあるとき、電流は電場の向きに逆らって低電位の端子から高電位の端子へと流れており、電荷担体は位置エネルギーを得る。したがって、なんらかの形のエネルギーが電力へと変換される。
電気生理学電流電圧特性はいかなる電気的な系にも適用可能だが、生体電気、とりわけ電気生理学の分野で広く用いられる。この分野では、電圧は生体膜の両側の電位差、すなわち膜電位を意味し、電流は生体膜上のイオンチャネルを通るイオンの流れを意味する。イオンチャネルの伝導率により電流は決定する。 生体膜を通るイオン電流の向きは、内側から外側が正とされる。すなわち、正電荷を帯びた陽イオンが細胞膜の内側から外側へ流れているとき、もしくは負電荷を帯びた陰イオンが外側から内側に流れているとき、電流値は正となる。逆に、陽イオンが外側から内側へ、員イオンが内側から外側へ流れているときは電流値は負となる。 右図は神経繊維のような興奮性膜を流れる電流のI–V曲線である。青線はカリウムイオンのI–V曲線であり、直線であることからカリウムイオンチャネルは電位依存のゲーティングを行わないことがわかる。黄線はナトリウムイオンのI–V曲線であり、曲線を描いていることからナトリウムイオンチャネルは電位依存性をもつことがわかる。緑線はナトリウム電流とカリウム電流を合計したもので、これら2種類のイオンチャネルを持つ膜の総電流電圧特性を近似的に表わす。 関連項目出典 |