x ▷ y は合成と逆を使って x˘ • y と定義可能で、双対的に x ◁ y を x • y˘ と定義できるので演算 ▷ や ◁ を関係代数の算号系 (signature) に含める必要はなく、通常そうされているように組 (L, ∧, ∨, ¬, 0, 1, •, I, ˘) として定めることができる。一方、x˘ は x ▷ I または I ◁ x として定義することができて、そうした場合に関係代数は剰余付きブール代数と同じ算号系を持つことになる。この定義のもとで公理は (x ▷ I)▷ I = x = I ◁(I ◁ x) の形に書けるが、これは単に ▷ I と I ◁ が対合であることを要請するものである。(Jonsson & Tsinakis 1993) はもしどちらかが対合ならば他方も対合であるので両者は同一の操作であり、つまりどちらも逆を与えることを示した。このような考察のもと
"関係代数とは剰余付きブール代数 (L, ∧, ∨, ¬, 0, 1, •, I, ▷, ◁) であって I ◁ が対合となるものである"
という直接的な定義が導かれる。I を乗法単位元に対応させ、x ◁ y を x の y による商だと思えば、構文論的に 1/x に該当するものは x˘ = I ◁ x であるという意味で、これを x の "逆数" あるいは "逆" として理解することができる。
動機付けとなるような関係代数の例は、集合 X の上の二項関係 R を部分集合 R ⊂ X2 とみなせることに拠っている。X 上の全ての二項関係から成るべき集合 Pow(X2) はブール代数をなす。よって一番目の例のようにそれだけで Pow(X2) は関係代数であるが、標準的には、合成を x(R ·S)z = ∃y. x R y ∧y S z と定義する。この解釈で R\S は、任意の x∈ X に対して、 x R y ならば x S z をみたす組 (y, z) からなる集合として一意に定まる。双対的に S/R は任意の z∈ X に対して y R z ならば x S z をみたす組 (x,y) からなる二項関係である。R˘ = ¬(R\¬I) という翻訳によって、R に対する逆 R˘ が定義される。 R˘ は x R y をみたす組 (y,x) からなる二項関係として定義できる。
群の直積または直和を合成とし、逆元をとる操作を逆とし、単位元を I として、更に R が一対一対応であるとき、R˘ • R = R • R˘ = I[6] が成り立つ。よってこのとき L はモノイドであるだけでなく群になる。定義の B4-B7 は群論においてよく知られた定理であり、関係代数は群論(とブール代数)の真の拡大になる。このことは関係代数の強い表現力を示唆する事実である。
歴史的注意
1860年にド・モルガンは RA の基盤を与えたが、パースはそれをより発展させ、その哲学的な強力さに魅了されるようになった。彼らの結果は E. Schröder(en) が著書 Vorlesungen über die Algebra der Logik (1890-1905)の第三巻で取り上げ、拡張された決定的な形として知られるようになった。「プリンキピア・マテマティカ」では Schröder の RA について記しているが、記法の発明者としてしか認めていない。1912年、Alwin Korselt は、量化子が四回入れ子になっている、ある論理式が RA で同値なものをもたないことを証明した(Korselt は彼の発見を出版しなかった。出版物の形で公開されたのは L. Loewenheim が 1915年に出版した論文[7])においてである。この事実は RA への興味を失わさせ、それはタルスキが 1941年に論文を執筆するまで続いた。彼の学生は現在まで RA の研究を続けている。タルスキは 1970年代に S. Givant の助けを借りて RA の研究に復帰し、彼らの共同研究は1987年に出版されたモノグラフ[5]にまとめられた。この本はこの分野における決定的な参考文献となっている。より詳細な RA の歴史については,Maddux の本[8][9]を参照すること。
^Tarski, A.: Abstract: Representation Problems for Relation Algebras, Bulletin of the AMS 54: (1948)80.
^ abGivant, S.: The calculus of relations as a foundation for mathematics, Journal of Automated Reasoning 37(2006): 277-322.
^ abSuppes, P. : Axiomatic Set Theory Van Nostrand, 1960. (Dover reprint, 1972.)
^Carnap, R.: Introdution to Symbolic Logic and its Applications, Dover Publications, 1958
^ abTarski, A., Givant, S.:A Formalization of Set Theory Without Variables, AMS, 1987.
^Tarski, A. :On the calculus of relations, Journal of Symbolic Logic 6 (1941) 73-89.
^Loewenheim L.: Über Möglichkeiten im Relativkalkül, Mathematische Annalen 76(1915): 447–470. (英訳版) Heijenoort, J. :On possibilities in the calculus of relatives, A Source Book in Mathematical Logic, 1879–1931, Harvard Univ. Press (1967), 228–251.