Aigner, Martin (2007), A course in enumeration, Berlin, New York: Springer, ISBN978-3-540-39032-9
Durand, Émile (1961), Solutions numériques des équations algrébriques I, Masson et Cie: Ch. XV «polynômes dont les coefficients sont symétriques ou antisymétriques»
Graham, Ronald; Knuth, Donald E.; Patashnik, Oren (1994), Concrete mathematics : a foundation for computer science, Reading, Mass: Addison-Wesley, ISBN978-0-201-55802-9
Katz, Nicholas M. (2012), Convolution and Equidistribution : Sato-Tate Theorems for Finite Field Mellin Transformations, Princeton University Press, ISBN978-0-691-15331-5
Markovsky, Ivan; Rao, Shodhan (2008), “Palindromic polynomials, time-reversible systems and conserved quantities”, Control and Automation, doi:10.1109/MED.2008.4602018
Pless, Vera (1990), Introduction to the Theory of Error Correcting Codes (2nd ed.), New York: Wiley-Interscience, ISBN978-0-471-61884-3
Roman, Steven (1995), Field Theory, New York: Springer-Verlag, ISBN978-0-387-94407-4
Sinclair, Christopher D.; Vaaler, Jeffrey D. (2008), “Self-inversive polynomials with all zeros on the unit circle”, in McKee, James; Smyth, C. J., Number theory and polynomials. Proceedings of the workshop, Bristol, UK, April 3–7, 2006, London Mathematical Society Lecture Note Series, 352, Cambridge: Cambridge University Press, pp. 312-321, ISBN978-0-521-71467-9, Zbl06093092
Stein, Jonathan Y. (2000), Digital Signal Processing: A Computer Science Perspective, Wiley Interscience, ISBN978-0-471-29546-4