全ての点付き集合の成す類は、すべての点付き写像の成す類を伴って圏を成す。この圏 Set∗ において、点付き一元集合({a}, a) は始対象かつ終対象[1]したがって零対象[4]:226である。通常の集合の圏 Set から点付き集合の圏への忠実函手が存在するが、それは充満にならず、この二つの圏は圏同値でない[11]:44。特に、空集合は(基点を選ぼうにも、元をそもそも持たないため)点付き集合にすることができない[12]。
^ abGrégory Berhuy (2010). An Introduction to Galois Cohomology and Its Applications. London Mathematical Society Lecture Note Series. 377. Cambridge University Press. p. 34. ISBN0-521-73866-0. Zbl1207.12003
^ abcJoseph Rotman (2008). An Introduction to Homological Algebra (2nd ed.). Springer Science & Business Media. ISBN978-0-387-68324-9
^Klee, V.; Witzgall, C. (1970) [1968]. “Facets and vertices of transportation polytopes”. In George Bernard Dantzig. Mathematics of the Decision Sciences. Part 1. American Mathematical Soc.. ASINB0020145L2. OCLC859802521
^ abLutz Schröder (2001). “Categories: a free tour”. In Jürgen Koslowski and Austin Melton. Categorical Perspectives. Springer Science & Business Media. p. 10. ISBN978-0-8176-4186-3
^ abF. W. Lawvere; Stephen Hoel Schanuel (2009). Conceptual Mathematics: A First Introduction to Categories (2nd ed.). Cambridge University Press. pp. 296–298. ISBN978-0-521-89485-2
^Neal Koblitz; B. Zilber; Yu. I. Manin (2009). A Course in Mathematical Logic for Mathematicians. Springer Science & Business Media. p. 290. ISBN978-1-4419-0615-1. "This formal completion of sets and partial maps by adding 'improper', 'infinite' elements was reinvented many times, in particular, in topology (one-point compactification) and in theoretical computer science."
^Francis Borceux; Dominique Bourn (2004). Mal'cev, Protomodular, Homological and Semi-Abelian Categories. Springer Science & Business Media. p. 131. ISBN978-1-4020-1961-6