対偶論法論理学において、含意命題の対偶とは、条件をともに否定し、さらにその含意の向きを逆にしたものである。明示的に書けば、命題「AならばBである」の対偶は、「BでないならばAでない」となる。命題とその対偶の論理的な真偽は常に一致する。したがって、ある命題が真ならばその対偶も真であるし、偽の場合もしかりである[1]。 対偶論法(たいぐうろんぽう、英: proof by contraposition)とは、証明で用いる推論規則の一つである。対偶論法では、対偶を用いて命題の真偽を推論する[2]。言い方を変えると、「AならばBである」という結論を、「BでないならばAでない」から導く推論規則である。 →「モーダストレンス」も参照
例x を任意の整数とする。
この命題に直接証明を与えることはできるけれども、ここでは命題の対偶を証明することにする。上の命題の対偶は以下である。
この命題は以下のように証明できる。x を偶数でないとする。その場合 x は奇数である。2つの奇数の積は奇数であるから、x2 = x·x も奇数になる。したがって、x2 は偶数ではない。 対偶を証明したことで、元の命題も正しいと言えることになる[3]。 関連項目脚注
|