信号処理信号処理(しんごうしょり、英: signal processing)とは、信号(光・音声・画像信号など)を数理手法で処理(分析・加工)する学問・技術の総称である。 アナログ信号処理とデジタル信号処理に分けられる。信号処理を支える基礎的な分野は信号理論とも呼ばれる[1]。 基本的には、信号から信号に変換するものであり、信号とは別の形式の情報を得るもの(例えば、カテゴリ分けや関連づけ、推論的な情報を得る認識や理解など)は含まれない。圧縮も含まれないことが多い。但し、認識や理解、圧縮の前段階としての信号の変換は信号処理と呼ばれる。そのため、信号処理はそれらの技術に対して非常に重要であるとともに関連が強い。なお、また入力と出力が同じ種類(物理量)の信号である場合(例えば入力と出力ともに同じ音圧である場合)には、フィルタリングとも呼ばれる。 信号処理の例としては、ノイズの載った信号から元の信号を推定するノイズ除去や、時間的な先の値を推定する予測、時間周波数解析などを行う直交変換、信号の特徴を得る特徴抽出、特定の周波数成分のみを得るフィルタなどがある。 高速フーリエ変換、ウェーブレット変換、畳み込み等のアルゴリズムがあり、以前はそれぞれ専用のハードウェアで処理していたが、近年ではDSPや汎用のハードウェアでソフトウェアで処理したり、FPGAによる再構成可能コンピューティングによって処理する方法が開発されつつある。 応用
手法
領域信号は、以下のような領域のどれかでよく扱われる。時間領域(一次元の信号)、空間領域(多次元の信号)、周波数領域、自己相関領域、ウェーブレット領域である。ある信号の基本的特性を最もよく表す領域の処理手法を取捨選択して処理が行われる。測定機器から得られたサンプルデータ列は時間領域か空間領域の表現となっている。これに離散フーリエ変換を施すと周波数領域の情報が得られる。これを周波数スペクトルと呼ぶ。自己相関はある信号自身の時間的・空間的に異なる部分との相互相関として定義される。 時間領域と空間領域時間領域と空間領域で共通する処理手法はフィルタリングによる入力信号の強化である。フィルタリングは一般に、ある(入力または出力)サンプルについて、その周囲のサンプルを変換することで構成される。フィルタは様々な性質で分類されるが、以下にその例を挙げる。
多くのフィルタはZ領域(周波数領域の上位概念)の伝達関数で記述できる。フィルタは漸化式でも記述できる場合がある。 FIRフィルタの出力は、入力信号とインパルス反応の畳み込みで計算できる場合がある。フィルタをブロック図で表現すれば、ハードウェアを使ってそのアルゴリズムを実装するのに使用できる。 周波数領域信号にフーリエ変換を施すことによって、時間領域や空間領域から周波数領域に変換することができる。フーリエ変換は信号情報を周波数毎の大きさと位相に変換する。フーリエ変換の結果に対して、各周波数の大きさ成分を二乗してパワースペクトルに変換することが多い。 信号を周波数領域で分析する目的は、信号の特性の分析にある。技術者はスペクトルを分析して信号に存在している周波数成分と欠けている周波数成分を知ることが出来る。 いくつかの共通して使われる周波数領域への変換手法がある。例えばケプストラム(cepstrum)は入力信号をフーリエ変換で周波数領域に変換し、それの対数をとって、再度逆フーリエ変換を施す。これにより、非常に弱い周波数成分を強調することができる。また、自己相関からフーリエ変換によってパワースペクトル密度、またはその逆が成り立つ(Wiener-Khintchineの定理)。 参考文献
学習用図書
脚注
関連項目 |